Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-07T21:49:57.611Z Has data issue: false hasContentIssue false

Extracting Intrinsic Functional Networks with Feature-Based Group Independent Component Analysis

Published online by Cambridge University Press:  01 January 2025

Vince D. Calhoun*
Affiliation:
The Mind Research Network and Dept. of ECE, University of New Mexico
Elena Allen
Affiliation:
The Mind Research Network
*
Requests for reprints should be sent to Vince D. Calhoun, The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106, USA. E-mail: vcalhoun@unm.edu

Abstract

There is increasing use of functional imaging data to understand the macro-connectome of the human brain. Of particular interest is the structure and function of intrinsic networks (regions exhibiting temporally coherent activity both at rest and while a task is being performed), which account for a significant portion of the variance in functional MRI data. While networks are typically estimated based on the temporal similarity between regions (based on temporal correlation, clustering methods, or independent component analysis [ICA]), some recent work has suggested that these intrinsic networks can be extracted from the inter-subject covariation among highly distilled features, such as amplitude maps reflecting regions modulated by a task or even coordinates extracted from large meta analytic studies. In this paper our goal was to explicitly compare the networks obtained from a first-level ICA (ICA on the spatio-temporal functional magnetic resonance imaging (fMRI) data) to those from a second-level ICA (i.e., ICA on computed features rather than on the first-level fMRI data). Convergent results from simulations, task-fMRI data, and rest-fMRI data show that the second-level analysis is slightly noisier than the first-level analysis but yields strikingly similar patterns of intrinsic networks (spatial correlations as high as 0.85 for task data and 0.65 for rest data, well above the empirical null) and also preserves the relationship of these networks with other variables such as age (for example, default mode network regions tended to show decreased low frequency power for first-level analyses and decreased loading parameters for second-level analyses). In addition, the best-estimated second-level results are those which are the most strongly reflected in the input feature. In summary, the use of feature-based ICA appears to be a valid tool for extracting intrinsic networks. We believe it will become a useful and important approach in the study of the macro-connectome, particularly in the context of data fusion.

Type
Original Paper
Copyright
Copyright © 2012 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, C., Juarez, M., White, T., Gollub, R.L., Pearlson, G.D., Bustillo, J.R., Lauriello, J., Ho, B.C., Bockholt, H.J., Clark, V.P., Magnotta, V., Calhoun, V.D. (2011). Antipsychotic dose and diminished neural modulation: a multi-site fMRI study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35, 473482CrossRefGoogle ScholarPubMed
Abou-Elseoud, A., Starck, T., Remes, J., Nikkinen, J., Tervonen, O., Kiviniemi, V. (2010). The effect of model order selection in group PICA. Human Brain Mapping, 31(8), 12071216CrossRefGoogle ScholarPubMed
Alkan, Y., Biswal, B.B., Taylor, P.A., Alvarez, T.L. (2011). Segregation of frontoparietal and cerebellar components within saccade and vergence networks using hierarchical independent component analysis of fMRI. Vision Neuroscience, 28(3), 247261CrossRefGoogle ScholarPubMed
Allen, E., Erhardt, E., Damaraju, E., Gruner, W., Segall, J., Silva, R., Havlicek, M., Rachakonda, S., Fries, J., Kalyanam, R., Michael, A., Turner, J., Eichele, T., Adelsheim, S., Bryan, A., Bustillo, J.R., Clark, V.P., Feldstein, S., Filbey, F.M., Ford, C., Hutchison, K., Jung, R., Kiehl, K.A., Kodituwakku, P., Komesu, Y., Mayer, A.R., Pearlson, G.D., Phillips, J., Sadek, J., Stevens, M., Teuscher, U., Thoma, R.J., Calhoun, V.D. (2011). A baseline for the multivariate comparison of resting state networks. Frontiers in Systems Neuroscience, 5(2), 12CrossRefGoogle ScholarPubMed
Andrews-Hanna, J.R., Reidler, J.S., Sepulcre, J., Poulin, R., Buckner, R.L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65(4), 550562CrossRefGoogle ScholarPubMed
Beckmann, C.F., Smith, S.M. (2005). Tensorial extensions of independent component analysis for multisubject FMRI analysis. NeuroImage, 25(1), 294311CrossRefGoogle ScholarPubMed
Bell, A.J., Sejnowski, T.J. (1995). An information maximisation approach to blind separation and blind deconvolution. Neural Computing, 7(6), 11291159CrossRefGoogle Scholar
Biswal, B.B., Mennes, M., Zuo, X.N., Gohel, S., Kelly, C., Smith, S.M., Beckmann, C.F., Adelstein, J.S., Buckner, R.L., Colcombe, S., Dogonowski, A.M., Ernst, M., Fair, D., Hampson, M., Hoptman, M.J., Hyde, J.S., Kiviniemi, V.J., Kotter, R., Li, S.J., Lin, C.P., Lowe, M.J., Mackay, C., Madden, D.J., Madsen, K.H., Margulies, D.S., Mayberg, H.S., McMahon, K., Monk, C.S., Mostofsky, S.H., Nagel, B.J., Pekar, J.J., Peltier, S.J., Petersen, S.E., Riedl, V., Rombouts, S.A., Rypma, B., Schlaggar, B.L., Schmidt, S., Seidler, R.D., Siegle, G.J., Sorg, C., Teng, G.J., Veijola, J., Villringer, A., Walter, M., Wang, L., Weng, X.C., Whitfield-Gabrieli, S., Williamson, P., Windischberger, C., Zang, Y.F., Zhang, H.Y., Castellanos, F.X., Milham, M.P. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 47344739CrossRefGoogle ScholarPubMed
Bockholt, H.J., Scully, M., Courtney, W., Rachakonda, S., Scott, A., Caprihan, A., Fries, J., Kalyanam, R., Segall, J., De la Garza, R., Lane, S., Calhoun, V.D. (2010). Mining the mind research network: a novel framework for exploring large scale, heterogeneous translational neuroscience research data sources. Frontiers in Neuroinformatics, 3(36), 110Google Scholar
Calhoun, V.D., Adali, T. (2009). Feature-based fusion of medical imaging data. IEEE Transactions on Information Technology in Biomedicine, 13(5), 110CrossRefGoogle ScholarPubMed
Calhoun, V.D., Adali, T., Kiehl, K.A., Astur, R.S., Pekar, J.J., Pearlson, G.D. (2006). A method for multi-task fMRI data fusion applied to schizophrenia. Human Brain Mapping, 27(7), 598610CrossRefGoogle Scholar
Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140151CrossRefGoogle ScholarPubMed
Calhoun, V.D., Adali, T., Pekar, J.J., Pearlson, G.D. (2003). Latency (in)sensitive ICA: group independent component analysis of fMRI data in the temporal frequency domain. NeuroImage, 20(3), 16611669CrossRefGoogle ScholarPubMed
Calhoun, V.D., Kiehl, K.A., Pearlson, G.D. (2008). Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Human Brain Mapping, 29(7), 828838CrossRefGoogle ScholarPubMed
Calhoun, V.D., Liu, J., Adali, T. (2009). A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage, 45, 163172CrossRefGoogle ScholarPubMed
Caprihan, A., Abbott, C., Yamamoto, J., Pearlson, G.D., Bizzozero, N., Sui, J., Calhoun, V.D. (2011). Source-based morphometry analysis of group differences in fractional anisotropy in schizophrenia. Brain Connectivity, 1(2), 133145CrossRefGoogle ScholarPubMed
Damoiseaux, J.S., Beckmann, C.F., Arigita, E.J., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., Rombouts, S.A. (2008). Reduced resting-state brain activity in the “default network” in normal aging. Cerebral Cortex, 18(8), 18561864CrossRefGoogle Scholar
Erhardt, E., Allen, E., Damaraju, E., Calhoun, V.D. (2011). On network derivation, classification, and visualization: a response to Habeck and Moeller. Brain Connectivity, 1(2), 119CrossRefGoogle ScholarPubMed
Erhardt, E., Allen, E., Wei, Y., Eichele, T., Calhoun, V.D. (2012). SimTB, a simulation toolbox for fMRI data under a model of spatiotemporal separability. NeuroImage, 59, 41604167CrossRefGoogle Scholar
Erhardt, E., Rachakonda, S., Bedrick, E., Adali, T., Calhoun, V.D. (2011). Comparison of multi-subject ICA methods for analysis of fMRI data. Human Brain Mapping, 12, 20752095CrossRefGoogle Scholar
Franco, A.R., Pritchard, A., Calhoun, V.D., Mayer, A.R. (2009). Inter-rater and inter-method reliability of default mode network selection. Human Brain Mapping, 30(7), 22932303CrossRefGoogle Scholar
Friston, K., Ashburner, J., Frith, C.D., Poline, J.P., Heather, J.D., Frackowiak, R.S. (1995). Spatial registration and normalization of images. Human Brain Mapping, 2, 165189CrossRefGoogle Scholar
Friston, K.J., Frith, C.D., Turner, R., Frackowiak, R.S. (1995). Characterizing evoked hemodynamics with fMRI. NeuroImage, 2(2), 157165CrossRefGoogle ScholarPubMed
Himberg, J., Hyvarinen, A., Esposito, F. (2004). Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage, 22(3), 12141222CrossRefGoogle ScholarPubMed
Kiviniemi, V., Starck, T., Remes, J., Long, X., Nikkinen, J., Haapea, M., Veijola, J., Moilanen, I., Isohanni, M., Zang, Y.F. (2009). Functional segmentation of the brain cortex using high model order group PICA. Human Brain Mapping, 30, 38653886CrossRefGoogle ScholarPubMed
Laird, A.R., Fox, P.M., Eickhoff, S.B., Turner, J.A., Ray, K.L., McKay, D.R., Glahn, D.C., Beckmann, C.F., Smith, S.M., Fox, P.T. (2011). Behavioral interpretations of intrinsic connectivity networks. Journal of Cognitive Neuroscience, 23(12), 40224037CrossRefGoogle ScholarPubMed
Li, Y., Adali, T., Calhoun, V.D. (2007). Estimating the number of independent components for fMRI data. Human Brain Mapping, 28(11), 12511266CrossRefGoogle Scholar
McKeown, M.J., Makeig, S., Brown, G.G., Jung, T.P., Kindermann, S.S., Bell, A.J., Sejnowski, T.J. (1998). Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 6, 1601883.0.CO;2-1>CrossRefGoogle ScholarPubMed
Michael, A., Baum, S., White, T., Demirci, O., Andreasen, N.C., Segall, J.M., Jung, R.E., Pearlson, G.D., Clark, V.P., Gollub, R.L., Schulz, S.C., Roffmann, J., Lim, K.O., Ho, B.C., Bockholt, H.J., Calhoun, V.D. (2010). Does function follow form?: methods to fuse structural and functional brain images show decreased linkage in schizophrenia. Human Brain Mapping, 49(3), 26262637Google ScholarPubMed
Scott, A., Courtney, W., Wood, D., De la Garza, R., Lane, S., Wang, R., Roberts, J., Turner, J.A., Calhoun, V.D. (2011). COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets. Frontiers in Neuroinformatics, 5(33), 115CrossRefGoogle ScholarPubMed
Segall, J., & Calhoun, V.D. (2011). Structural and functional networks in the human brain. Paper presented at the Proc. HBM, Quebec City, Canada. Google Scholar
Seifritz, E., Esposito, F., Hennel, F., Mustovic, H., Neuhoff, J.G., Bilecen, D., Tedeschi, G., Scheffler, K., Salle, F.D. (2002). Spatiotemporal pattern of neural processing in the human auditory cortex. Science, 297(6), 17061708CrossRefGoogle ScholarPubMed
Shehzad, Z., Kelly, A.M., Reiss, P.T., Gee, D.G., Gotimer, K., Uddin, L.Q., Lee, S.H., Margulies, D.S., Roy, A.K., Biswal, B.B., Petkova, E., Castellanos, F.X., Milham, M.P. (2009). The resting brain: unconstrained yet reliable. Cerebral Cortex, 19(10), 22092229CrossRefGoogle ScholarPubMed
Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., Filippini, N., Watkins, K.E., Toro, R., Laird, A.R., Beckmann, C.F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 1304013045CrossRefGoogle ScholarPubMed
Sui, J., Adali, T., Clark, V.P., Pearlson, G., Calhoun, V.D. (2009). A method for accurate group difference detection by constraining the mixing coefficients in an ICA framework. Human Brain Mapping, 30(9), 29532970CrossRefGoogle Scholar
Sui, J., Adali, T., Yu, Q., Calhoun, V.D. (2012). A review of multivariate methods for multimodal fusion of brain imaging data. Journal of Neuroscience Methods, 204(1), 6881CrossRefGoogle ScholarPubMed
Svensen, M., Kruggel, F., Benali, H. (2002). ICA of fMRI group study data. NeuroImage, 16, 551563CrossRefGoogle ScholarPubMed
Van Dijk, K.R., Hedden, T., Venkataraman, A., Evans, K.C., Lazar, S.W., Buckner, R.L. (2010). Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. Journal of Neurophysiology, 103(1), 297321CrossRefGoogle ScholarPubMed
Varoquaux, G., Sadaghiani, S., Pinel, P., Kleinschmidt, A., Poline, J.B., Thirion, B. (2010). A group model for stable multi-subject ICA on fMRI datasets. NeuroImage, 51(1), 288299CrossRefGoogle ScholarPubMed
Xu, L., Groth, K., Pearlson, G., Schretlen, D., Calhoun, V. (2009). Source based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Human Brain Mapping, 30, 711724CrossRefGoogle ScholarPubMed
Ystad, M., Eichele, T., Lundervold, A.J., Lundervold, A. (2010). Subcortical functional connectivity and verbal episodic memory in healthy elderly—a resting state fMRI study. NeuroImage, 52(1), 379388CrossRefGoogle ScholarPubMed
Zou, Q.H., Zhu, C.Z., Yang, Y., Zuo, X.N., Long, X.Y., Cao, Q.J., Wang, Y.F., Zang, Y.F. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. Journal of Neuroscience Methods, 172(1), 137141CrossRefGoogle ScholarPubMed