Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-07T19:16:09.323Z Has data issue: false hasContentIssue false

The Heteroscedastic Graded Response Model with a Skewed Latent Trait: Testing Statistical and Substantive Hypotheses Related to Skewed Item Category Functions

Published online by Cambridge University Press:  01 January 2025

Dylan Molenaar*
Affiliation:
University of Amsterdam
Conor V. Dolan
Affiliation:
University of Amsterdam
Paul de Boeck
Affiliation:
University of Amsterdam
*
Requests for reprints should be sent to Dylan Molenaar, Psychological Methods, Department of Psychology, University of Amsterdam, Weesperplein 4, 1018 XA, Amsterdam, The Netherlands. E-mail: d.molenaar@uva.nl

Abstract

The Graded Response Model (GRM; Samejima, Estimation of ability using a response pattern of graded scores, Psychometric Monograph No. 17, Richmond, VA: The Psychometric Society, 1969) can be derived by assuming a linear regression of a continuous variable, Z, on the trait, θ, to underlie the ordinal item scores (Takane & de Leeuw in Psychometrika, 52:393–408, 1987). Traditionally, a normal distribution is specified for Z implying homoscedastic error variances and a normally distributed θ. In this paper, we present the Heteroscedastic GRM with Skewed Latent Trait, which extends the traditional GRM by incorporation of heteroscedastic error variances and a skew-normal latent trait. An appealing property of the extended GRM is that it includes the traditional GRM as a special case. This enables specific tests on the normality assumption of Z. We show how violations of normality in Z can lead to asymmetrical category response functions. The ability to test this normality assumption is beneficial from both a statistical and substantive perspective. In a simulation study, we show the viability of the model and investigate the specificity of the effects. We apply the model to a dataset on affect and a dataset on alexithymia.

Type
Original Paper
Copyright
Copyright © 2012 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agresti, A. (2002). Categorical data analysis, (2rd ed.). New York: WileyCrossRefGoogle Scholar
Allport, G.W. (1937). Personality. A psychological interpretation, New York: Henry HoltGoogle Scholar
Arnold, B., Beaver, R. (2002). Skewed multivariate models related to hidden truncation and/or selective reporting. Test, 11, 754CrossRefGoogle Scholar
Arnold, B.C., Beaver, R.J., Groeneveld, R.A., Meeker, W.Q. (1993). The nontruncated marginal of a truncated bivariate normal distribution. Psychometrika, 58, 471488CrossRefGoogle Scholar
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12, 171178Google Scholar
Azzalini, A. (1986). Further results on a class of distributions which includes the normal ones. Statistica, 46, 199208Google Scholar
Azzalini, A. (2005). The skew-normal distribution and related multivariate families. Scandinavian Journal of Statistics, 32, 159188CrossRefGoogle Scholar
Azzalini, A., Capatanio, A. (1999). Statistical applications of the multivariate skew normal distribution. Journal of the Royal Statistical Society. Series B, 61, 579602CrossRefGoogle Scholar
Azzalini, A., Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83, 715726CrossRefGoogle Scholar
Azevedo, C.L.N., Bolfarine, H., Andrade, D.F. (2011). Bayesian inference for a skew-normal IRT model under the centred parameterization. Computational Statistics & Data Analysis, 55, 353365CrossRefGoogle Scholar
Bauer, D.J., Hussong, A.M. (2009). Psychometric approaches for developing commensurate measures across independent studies: traditional and new models. Psychological Methods, 14, 101125CrossRefGoogle ScholarPubMed
Baumeister, R.E., Tice, T.M. (1988). Metatraits. Journal of Personality, 56, 571598CrossRefGoogle Scholar
Bazán, J.L., Bolfarine, H., & Branco, D.M., (2004). A new family of asymmetric models for item response theory: a skew-normal IRT family (Technical Report No. RT-MAE-2004-17). Department of Statistics, University of São Paulo.Google Scholar
Bazán, J.L., Branco, M.D., Bolfarine, H. (2006). A skew item response model. Bayesian Analysis, 1, 861892CrossRefGoogle Scholar
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In Lord, F.M., Novick, M.R. Statistical theories of mental test scores, Reading: Addison Wesley (Chapters 17–20)Google Scholar
Bock, R.D., Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: application of an EM algorithm. Psychometrika, 46, 443459CrossRefGoogle Scholar
Bollen, K.A. (1996). A limited-information estimator for LISREL models with or without heteroscedastic errors. In Marcoulides, G.A., Schumacker, R.E. Advanced structural equation modeling: issues and techniques, Mahwah: Erlbaum 227241Google Scholar
Chen, M.-H., Dey, D.K., Shao, Q.M. (1999). A new skewed link model for dichotomous quantal response data. Journal of the American Statistical Association, 94, 11721186CrossRefGoogle Scholar
Chiogna, M. (2005). A note on the asymptotic distribution of the maximum likelihood estimator for the scalar skew-normal distribution. Statistical Methods & Applications, 14, 331334CrossRefGoogle Scholar
Cramér, H. (1937). Random variables and probability distributions, Cambridge: Cambridge University PressGoogle Scholar
Cramér, H. (1946). Mathematical methods of statistics, Princeton: Princeton University PressGoogle Scholar
Czado, C., Santner, T.J. (1992). The effect of link misspecification on binary regression inference. Journal of Statistical Planning and Inference, 33, 213231CrossRefGoogle Scholar
Emons, W.H., Meijer, R.R., Denollet, J. (2007). Negative affectivity and social inhibition in cardiovascular disease: evaluating type-D personality and its assessment using item response theory. Journal of Psychosomatic Research, 63, 2739CrossRefGoogle ScholarPubMed
Fisher, R.A. (1928). The general sampling distribution of the multiple correlation coefficient. Proceedings of the Royal Society of London. Series A, 121, 654673Google Scholar
Fraley, R.C., Waller, N.G., Brennan, K.A. (2000). An item response theory analysis of self-report measures of adult attachment. Journal of Personality and Social Psychology, 78, 350365CrossRefGoogle ScholarPubMed
Guadagnoli, E., Mor, V. (1989). Measuring cancer patients’ affect: revision and psychometric properties of the Profile of Mood States (POMS). Psychological Assessment, 1, 150154CrossRefGoogle Scholar
Hessen, D.J., Dolan, C.V. (2009). Heteroscedastic one-factor models and marginal maximum likelihood estimation. British Journal of Mathematical & Statistical Psychology, 62, 5777CrossRefGoogle ScholarPubMed
Jinks, J.L., Fulker, D.W. (1970). Comparison of the biometrical genetical, MAVA, and classical approaches to the analysis of human behavior. Psychological Bulletin, 73, 311349CrossRefGoogle Scholar
Jöreskog, K.J., (2002). Structural equation modeling with ordinal variables using LISREL. Scientific Software International Inc. Retrieved November 3, 2010, from: http://www.ssicentral.com/lisrel/techdocs/ordinal.pdf. Google Scholar
Keselman, H.J., Lix, L.M. (1997). Analyzing multivariate repeated measures designs when covariance matrices are heterogeneous. British Journal of Mathematical & Statistical Psychology, 50, 319338CrossRefGoogle Scholar
Kirisci, L., Hsu, T., Yu, L. (2001). Robustness of item parameter estimation programs to assumptions of unidimensionality and normality. Applied Psychological Measurement, 25, 146162CrossRefGoogle Scholar
Konishi, S., Kitagawa, G. (2008). Information criteria and statistical modeling, New York: SpringerCrossRefGoogle Scholar
Long, J.S., Ervin, L.H. (2000). Using heteroscedasticity consistent standard errors in the linear regression model. American Statistician, 54, 217224CrossRefGoogle Scholar
Markus, H. (1977). Self-schemata and processing information about the self. Journal of Personality and Social Psychology, 35, 6378CrossRefGoogle Scholar
McDonald, R.P. (1999). Test theory: a unified treatment, Mahwah: Lawrence ErlbaumGoogle Scholar
Mehta, P.D., Neale, M.C., Flay, B.R. (2004). Squeezing interval change from ordinal panel data: latent growth curves with ordinal outcomes. Psychological Methods, 9, 301333CrossRefGoogle ScholarPubMed
Meijer, E., Mooijaart, A. (1996). Factor analysis with heteroscedastic errors. British Journal of Mathematical & Statistical Psychology, 49, 189202CrossRefGoogle Scholar
Mellenbergh, G.J. (1989). Item bias and item response theory. International Journal of Educational Research, 13, 127143CrossRefGoogle Scholar
Molenaar, D., Dolan, C.V., van der Maas, H.L.J. (2011). Modeling ability differentiation in the second-order factor model. Structural Equation Modeling, 18, 578594CrossRefGoogle Scholar
Molenaar, D., Dolan, C.V., Verhelst, N.D. (2010). Testing and modeling non-normality within the one factor model. British Journal of Mathematical & Statistical Psychology, 63, 293317CrossRefGoogle ScholarPubMed
Molenaar, D., Dolan, C.V., Wicherts, J.M. (2009). The power to detect sex differences in IQ test scores using multi-group covariance and mean structure analysis. Intelligence, 37, 396404CrossRefGoogle Scholar
Molenaar, D., Dolan, C.V., Wicherts, J.M., van der Maas, H.L.J. (2010). Modeling differentiation of cognitive abilities within the higher-order factor model using moderated factor analysis. Intelligence, 38, 611624CrossRefGoogle Scholar
Molenaar, D., van der Sluis, S., Boomsma, D.I., Dolan, C.V. (2012). Detecting specific genotype by environment interaction using marginal maximum likelihood estimation in the classical twin design. Behavior Genetics, 42, 483499CrossRefGoogle ScholarPubMed
Monti, A.C. (2003). A note on the estimation of the skew normal and the skew exponential power distributions. Metron, LXI, 205219Google Scholar
Muthén, B., Hofacker, C. (1988). Testing the assumptions underlying tetrachoric correlations. Psychometrika, 53, 563578CrossRefGoogle Scholar
Muthén, L.K., Muthén, B.O. (2007). Mplus user’s guide, (5th ed.). Los Angeles: Muthén & MuthénGoogle Scholar
Neale, M.C. (1998). Modeling interaction and nonlinear effects with Mx: a general approach. In Marcoulides, G., Schumacker, R. Interaction and non-linear effects in structural equation modeling, New York: Lawrence Erlbaum Associates 4361Google Scholar
Neale, M.C., Aggen, S.H., Maes, H.H., Kubarych, T.S., Schmitt, J.E. (2006). Methodological issues in the assessment of substance use phenotypes. Addictive Behaviors, 31, 10101034CrossRefGoogle ScholarPubMed
Neale, M.C., Boker, S.M., Xie, G., Maes, H.H. (2002). Mx: statistical modeling, (6th ed.). Richmond: VCUGoogle Scholar
Ramsay, J.O., Abrahamowicz, M. (1989). Binomial regression with monotone splines: a psychometric application. Journal of the American Statistical Association, 84, 906915CrossRefGoogle Scholar
Ree, M.J. (1979). Estimating item characteristic curves. Applied Psychological Measurement, 3, 371385CrossRefGoogle Scholar
Rochon, J. (1992). ARMA covariance structures with time heteroscedasticity for repeated measures experiments. Journal of the American Statistical Association, 87, 777784CrossRefGoogle Scholar
Rogers, T.B., Kuiper, N.A., Kirker, W.S. (1977). Self-reference and the encoding of personal information. Journal of Personality and Social Psychology, 35, 677688CrossRefGoogle ScholarPubMed
Samejima, F. (1969). Estimation of ability using a response pattern of graded scores, Richmond: The Psychometric SocietyCrossRefGoogle Scholar
Samejima, F. (1997). Departure from normal assumptions: a promise for future psychometrics with substantive mathematical modeling. Psychometrika, 62, 471493CrossRefGoogle Scholar
Samejima, F. (2000). Logistic positive exponent family of models: virtue of asymmetric item characteristic curves. Psychometrika, 65, 319335CrossRefGoogle Scholar
Samejima, F. (2008). Graded response model based on the logistic positive exponent family of models for dichotomous responses. Psychometrika, 73, 561578CrossRefGoogle Scholar
Satorra, A., Saris, W.E. (1985). The power of the likelihood ratio test in covariance structure analysis. Psychometrika, 50, 8390CrossRefGoogle Scholar
Schermelleh-Engel, K., Moosbrugger, H., Müller, H. (2003). Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research, 8, 2374Google Scholar
Schmitt, J.E., Mehta, P.D., Aggen, S.H., Kubarych, T.S., Neale, M.C. (2006). Semi-nonparametric methods for detecting latent non-normality: a fusion of latent trait and ordered latent class modeling. Multivariate Behavioral Research, 41, 427443CrossRefGoogle ScholarPubMed
Schmueli, G. (2010). To explain or to predict. Statistical Science, 25, 289310Google Scholar
Seong, T.J. (1990). Sensitivity of marginal maximum likelihood estimation of item and ability parameters to the characteristics of the prior ability distributions. Applied Psychological Measurement, 14, 299311CrossRefGoogle Scholar
Spearman, C.E. (1927). The abilities of man: their nature and measurement, New York: MacmillanGoogle Scholar
Stone, C.A. (1992). Recovery of marginal maximum likelihood estimates in the two-parameter logistic response model: an evaluation of MULTILOG. Applied Psychological Measurement, 16, 116CrossRefGoogle Scholar
Swaminathan, H., Gifford, J. (1983). Estimation of parameters in the three-parameter latent trait model. In Weiss, D.J. New horizons in testing: latent trait test theory and computerized adaptive testing, New York: Academic Press 1330Google Scholar
Takane, Y., de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393408CrossRefGoogle Scholar
Tellegen, A. (1988). The analysis of consistency in personality assessment. Journal of Personality, 56, 621663CrossRefGoogle Scholar
Tucker-Drob, E.M. (2009). Differentiation of cognitive abilities across the life span. Developmental Psychology, 45, 10971118CrossRefGoogle ScholarPubMed
van den Oord, E.J. (2005). Estimating Johnson curve population distributions in MULTILOG. Applied Psychological Measurement, 29, 4564CrossRefGoogle Scholar
van der Sluis, S., Dolan, C.V., Neale, M.C., Boomsma, D.I., Posthuma, D. (2006). Detecting genotype-environment interaction in monozygotic twin data: comparing the Jinks & Fulker test and a new test based on marginal maximum likelihood estimation. Twin Research and Human Genetics, 9, 377392CrossRefGoogle Scholar
Verhelst, N.D., (2009). Latent variable analysis with skew distributions. Manuscript in preparation.Google Scholar
Vermunt, J.K. (2004). An EM algorithm for the estimation of parametric and nonparametric hierarchical nonlinear models. Statistica Neerlandica, 58, 220233CrossRefGoogle Scholar
Vermunt, J.K., Hagenaars, J.A. (2004). Ordinal longitudinal data analysis. In Hauspie, R.C., Cameron, N., Molinari, L. Methods in human growth research, Cambridge: Cambridge University Press 374393CrossRefGoogle Scholar
Vorst, H.C.M., Bermond, B. (2001). Validity and reliability of the Bermond–Vorst alexithymia questionnaire. Personality and Individual Differences, 30, 413434CrossRefGoogle Scholar
Wirth, R.J., Edwards, M.C. (2007). Item factor analysis: current approaches and future directions. Psychological Methods, 12, 5879CrossRefGoogle ScholarPubMed
Woods, C.M. (2007). Ramsay-curve IRT for Likert type data. Applied Psychological Measurement, 31, 195212CrossRefGoogle Scholar
Zwinderman, A.H., van den Wollenberg, A.L. (1990). Robustness of marginal maximum likelihood estimation in the Rasch model. Applied Psychological Measurement, 14, 7381CrossRefGoogle Scholar