Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-07T19:28:13.186Z Has data issue: false hasContentIssue false

Joint Latent Space Model for Social Networks with Multivariate Attributes

Published online by Cambridge University Press:  01 January 2025

Selena Wang*
Affiliation:
Yale University
Subhadeep Paul
Affiliation:
The Ohio State University
Paul De Boeck
Affiliation:
The Ohio State University
*
Correspondence should be made to Selena Wang, Department of Biostatistics, Yale University, New Haven, USA. Email: selena.wang@yale.edu

Abstract

In social, behavioral and economic sciences, researchers are interested in modeling a social network among a group of individuals, along with their attributes. The attributes can be responses to survey questionnaires and are often high dimensional. We propose a joint latent space model (JLSM) that summarizes information from the social network and the multivariate attributes in a person-attribute joint latent space. We develop a variational Bayesian expectation–maximization estimation algorithm to estimate the attribute and person locations in the joint latent space. This methodology allows for effective integration, informative visualization and prediction of social networks and attributes. Using JLSM, we explore the French financial elites based on their social networks and their career, political views and social status. We observe a division in the social circles of the French elites in accordance with the differences in their attributes. We analyze user networks and behaviors in multimodal social media systems like YouTube. A R package “jlsm” is developed to fit the models proposed in this paper and is publicly available from the CRAN repository https://cran.r-project.org/web/packages/jlsm/jlsm.pdf.

Type
Theory & Methods
Copyright
Copyright © 2023 The Author(s) under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11336-023-09926-5.

References

References

Agarwal, A., & Xue, L. (2020). Model-based clustering of nonparametric weighted networks with application to water pollution analysis. Technometrics, 62, 161172.CrossRefGoogle ScholarPubMed
Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2008). Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 9, 19812014.Google ScholarPubMed
Arroyo, J., Athreya, A., Cape, J., Chen, G., Priebe, C. E., & Vogelstein, J. T. (2019). Inference for multiple heterogeneous networks with a common invariant subspace. arXiv preprint arXiv:1906.10026 Google Scholar
Attias, H. (1999). Inferring parameters and structure of latent variable models by variational Bayes. In Proceedings of the fifteenth conference on uncertainty in artificial intelligence (pp. 2130). Morgan Kaufmann Publishers Inc.Google Scholar
Austin, A., Linkletter, C., & Wu, Z. (2013). Covariate-defined latent space random effects model. Social Networks, 35, 338346.CrossRefGoogle Scholar
Barbillon, P., Donnet, S., Lazega, E., & Bar-Hen, A. (2015). Stochastic block models for multiplex networks: An application to networks of researchers. arXiv preprint arXiv:1501.06444 Google Scholar
Beal, M. J., et al. (2003). Variational algorithms for approximate Bayesian inference. University of London.Google Scholar
Beal, M. J., Ghahramani, Z., et al. Variational Bayesian learning of directed graphical models with hidden variables Bayesian Analysis. (2006 1, 793831.CrossRefGoogle Scholar
Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112, 859877.CrossRefGoogle Scholar
Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53, 605634.CrossRefGoogle ScholarPubMed
Borsboom, D., & Cramer, A. O. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91121.CrossRefGoogle Scholar
Bramoullé, Y., Djebbari, H., & Fortin, B. (2009). Identification of peer effects through social networks. Journal of Econometrics, 150, 4155.CrossRefGoogle Scholar
Celisse, A., Daudin, J. J., & Pierre, L. (2012). Consistency of maximum-likelihood and variational estimators in the stochastic block model. Electronic Journal of Statistics, 6, 18471899.CrossRefGoogle Scholar
Che, C., Jin, I. H., & Zhang, Z. (2021). Network mediation analysis using model-based eigenvalue decomposition. Structural Equation Modeling: A Multidisciplinary Journal, 28, 148161.CrossRefGoogle Scholar
Cho, Y.-S., Ver Steeg, G., Ferrara, E., & Galstyan, A. (2016). Latent space model for multi-modal social data. In Proceedings of the 25th international conference on world wide web (pp. 447–458).CrossRefGoogle Scholar
D’Angelo, S., Alfò, M., & Murphy, T. B. (2018). Node-specific effects in latent space modelling of multidimensional networks. In 49th scientific meeting of the Italian Statistical Society.Google Scholar
D’Angelo, S., Alfò, M., & Brendan Murphy, T. (2020). Modeling node heterogeneity in latent space models for multidimensional networks. Statistica Neerlandica, 74, 324341.CrossRefGoogle Scholar
D’Angelo, S., Alfò, M., & Fop, M. (2020). Model-based clustering for multivariate networks. arXiv preprint arXiv:2001.05260 Google Scholar
Daudin, J. J., Picard, F., & Robin, S. (2008). A mixture model for random graphs. Statistics and Computing, 18, 173183.CrossRefGoogle Scholar
Dean, D. O., Bauer, D. J., & Prinstein, M. J. (2017). Friendship dissolution within social networks modeled through multilevel event history analysis. Multivariate Behavioral Research, 52, 271289.CrossRefGoogle ScholarPubMed
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 1–38.CrossRefGoogle Scholar
Dorans, N., & Drasgow, F. (1978). Alternative weighting schemes for linear prediction. Organizational Behavior and Human Performance, 21, 316345.CrossRefGoogle Scholar
Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network pschometrics: Combining network and latent variable models. Psychometrika, 82, 904927.CrossRefGoogle ScholarPubMed
Fosdick, B. K. (2013). Modeling Heterogeneity within and between Matrices and Arrays, Ph.D. thesis.Google Scholar
Fosdick, B. K., & Hoff, P. D. (2015). Testing and modeling dependencies between a network and nodal attributes. Journal of the American Statistical Association, 110, 10471056.CrossRefGoogle ScholarPubMed
Frank, K. A., Zhao, Y., & Borman, K. (2004). Social capital and the diffusion of innovations within organizations: The case of computer technology in schools. Sociology of Education, 77, 148171.CrossRefGoogle Scholar
Fratiglioni, L., Wang, H.-X., Ericsson, K., Maytan, M., & Winblad, B. (2000). Influence of social network on occurrence of dementia: A community-based longitudinal study. The Lancet, 355, 13151319.CrossRefGoogle ScholarPubMed
Frey, M. C., & Detterman, D. K. (2004). Scholastic assessment or g? The relationship between the scholastic assessment test and general cognitive ability. Psychological Science, 15, 373378.CrossRefGoogle ScholarPubMed
Friel, N., Rastelli, R., Wyse, J., & Raftery, A. E. (2016). Interlocking directorates in Irish companies using a latent space model for bipartite networks. Proceedings of the National Academy of Sciences, 113, 66296634.CrossRefGoogle ScholarPubMed
Fujimoto, K., Wang, P., & Valente, T. W. (2013). The decomposed affiliation exposure model: A network approach to segregating peer influences from crowds and organized sports. Network Science, 1, 154169.CrossRefGoogle Scholar
Goldsmith-Pinkham, P., & Imbens, G. W. (2013). Social networks and the identification of peer effects. Journal of Business and Economic Statistics, 31, 253264.CrossRefGoogle Scholar
Gollini, I. (2015). lvm4net: Latent variable models for networks. Latent variable models for network data using fast inferential procedures.Google Scholar
Gollini, I., & Murphy, T. B. (2016). Joint modeling of multiple network views. Journal of Computational and Graphical Statistics, 25, 246265.CrossRefGoogle Scholar
Gormley, I. C., & Murphy, T. B. (2010). A mixture of experts latent position cluster model for social network data. Statistical Methodology, 7, 385405.CrossRefGoogle Scholar
Guhaniyogi, R., Rodriguez, A., et al. Joint modeling of longitudinal relational data and exogenous variables Bayesian Analysis. (2020 15, 477503.CrossRefGoogle Scholar
Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., & Ofek-Koifman, S. (2009). Personalized recommendation of social software items based on social relations. In Proceedings of the third ACM conference on Recommender systems (pp. 53–60).CrossRefGoogle Scholar
Handcock, M. S., Raftery, A. E., & Tantrum, J. M. (2007). Model-based clustering for social networks. Journal of the Royal Statistical Society Series A, 170, 301354.CrossRefGoogle Scholar
Handcock, M. S., Raftery, A. E., & Tantrum, J. M. (2007). Model-based clustering for social networks. Journal of the Royal Statistical Society: Series A (Statistics in Society), 170, 301354.CrossRefGoogle Scholar
Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. Journal of the American Statistical Association, 100, 286295.CrossRefGoogle Scholar
Hoff, P. (2008). Modeling homophily and stochastic equivalence in symmetric relational data. In Advances in neural information processing systems (pp. 657–664).Google Scholar
Hoff, P. D. (2009). Multiplicative latent factor models for description and prediction of social networks. Computational and Mathematical Organization Theory, 15 261.CrossRefGoogle Scholar
Hoff, P. D. (2018). Additive and multiplicative effects network models. arXiv preprint arXiv:1807.08038 Google Scholar
Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association, 97, 10901098.CrossRefGoogle Scholar
Huang, S., & Feng, Y. (2018). Pairwise covariates-adjusted block model for community detection. arXiv preprint arXiv:1807.03469 Google Scholar
Jensen, J. W. (1906). Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica, 30, 175193.CrossRefGoogle Scholar
Jeon, M., Jin, I. H., Schweinberger, M. and Baugh, S. (2021). Mapping unobserved item–respondent interactions: a latent space item response model with interaction map. psychometrika 86 378–403.CrossRefGoogle Scholar
Jin, I. H., & Jeon, M. (2018).. A doubly latent space joint model for local item and person dependence in the analysis of item response data. Psychometrika 1–25.Google Scholar
Jin, I. H., & Jeon, M. (2019). A doubly latent space joint model for local item and person dependence in the analysis of item response data. Psychometrika, 84, 236260.CrossRefGoogle ScholarPubMed
Kadushin, C. (1995). Friendship among the French financial elite. American Sociological Review 202–221.CrossRefGoogle Scholar
Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A., & Berlow, E. L. (2016). How structured is the entangled bank? The surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PLoS Biology, 14 CrossRefGoogle Scholar
Kim, Y., & Srivastava, J. (2007). Impact of social influence in e-commerce decision making. In Proceedings of the ninth international conference on electronic commerce (pp. 293–302). ACM.CrossRefGoogle Scholar
Kim, H.-N., Alkhaldi, A., El Saddik, A., & Jo, G.-S. (2011). Collaborative user modeling with usergenerated tags for social recommender systems. Expert Systems with Applications, 38, 84888496.CrossRefGoogle Scholar
Kim, B., Lee, K. H., Xue, L., & Niu, X. (2018). A review of dynamic network models with latent variables. Statistics Surveys, 12 105.CrossRefGoogle ScholarPubMed
Koenig, K. A., Frey, M. C., & Detterman, D. K. (2008). ACT and general cognitive ability. Intelligence, 36, 153160.CrossRefGoogle Scholar
Krivitsky, P. N., Handcock, M. S. (2008). Fitting position latent cluster models for social networks with latentnet. Journal of Statistical Software 24.CrossRefGoogle Scholar
Krivitsky, P. N., Handcock, M. S., Raftery, A. E., & Hoff, P. D. (2009). Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Social Networks, 31, 204213.CrossRefGoogle ScholarPubMed
Kwon, K. H., Stefanone, M. A., & Barnett, G. A. (2014). Social network influence on online behavioral choices: exploring group formation on social network sites. American Behavioral Scientist, 58, 13451360.CrossRefGoogle Scholar
Leenders, R. T. A. (2002). Modeling social influence through network autocorrelation: Constructing the weight matrix. Social Networks, 24, 2147.CrossRefGoogle Scholar
Liu, H., Jin, I. H., & Zhang, Z. (2018). Structural equation modeling of social networks: Specification, estimation, and application. Multivariate Behavioral Research 1–17.CrossRefGoogle Scholar
Liu, F., & Lee, H. J. (2010). Use of social network information to enhance collaborative filtering performance. Expert Systems with Applications, 37, 47724778.CrossRefGoogle Scholar
Liu, H., Jin, I. H., Zhang, Z., & Yuan, Y. (2021). Social network mediation analysis: A latent space approach. Psychometrika, 86, 272298.CrossRefGoogle ScholarPubMed
Lu, Y., Tsaparas, P., Ntoulas, A., & Polanyi, L. (2010). Exploiting social context for review quality prediction. In Proceedings of the 19th international conference on world wide web (pp. 691–700).CrossRefGoogle Scholar
Lusher, D., Koskinen, J., & Robins, G. (2013). Exponential random graph models for social networks: Theory, methods, and applications. Cambridge University Press Google Scholar
Ma, Z., Ma, Z., & Yuan, H. (2020). Universal latent space model fitting for large networks with edge covariates. Journal of Machine Learning Research, 21, 167.Google Scholar
Ma, H., Zhou, D., Liu, C., Lyu, M. R., & King, I. (2011). Recommender systems with social regularization. In Proceedings of the fourth ACM international conference on Web search and data mining (pp. 287–296).CrossRefGoogle Scholar
Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R., Waldorp, L., Maas, H. V. D., & Maris, G. (2018). An introduction to network psychometrics: Relating Ising network models to item response theory models. Multivariate Behavioral Research, 53, 1535.CrossRefGoogle ScholarPubMed
Matias, C., & Miele, V. (2016). Statistical clustering of temporal networks through a dynamic stochastic block model. Journal of the Royal Statistical Society: Series B (Statistical Methodology).Google Scholar
McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415444.CrossRefGoogle Scholar
Mele, A., Hao, L., Cape, J., & Priebe, C. E. (2019). Spectral inference for large Stochastic Blockmodels with nodal covariates. arXiv preprint arXiv:1908.06438 CrossRefGoogle Scholar
Mercken, L., Snijders, T. A., Steglich, C., Vartiainen, E., & De Vries, H. (2010). Dynamics of adolescent friendship networks and smoking behavior. Social Networks, 32, 7281.CrossRefGoogle Scholar
Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., & Bhattacharjee, B. (2007). Measurement and analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement (pp. 29–42).CrossRefGoogle Scholar
Murdoch, D., Chow, E., Murdoch, M. D., & Suggests, M. (2020). Package ‘ellipse’. American Statistician, 50, 178180.CrossRefGoogle Scholar
Palestro, J. J., Bahg, G., Sederberg, P. B., Lu, Z.-L., Steyvers, M., & Turner, B. M. (2018). A tutorial on joint models of neural and behavioral measures of cognition. Journal of Mathematical Psychology, 84, 2048.CrossRefGoogle Scholar
Paul, S., & Chen, Y. (2016). Consistent community detection in multi-relational data through restricted multi-layer stochastic blockmodel. Electronic Journal of Statistics, 10, 38073870.CrossRefGoogle Scholar
Paul, S., & Chen, Y. (2020). Spectral and matrix factorization methods for consistent community detection in multi-layer networks. The Annals of Statistics, 48, 230250.CrossRefGoogle Scholar
Robins, G., Pattison, P., & Elliott, P. (2001). Network models for social influence processes. Psychometrika, 66, 161189.CrossRefGoogle Scholar
Roy, S., Atchadé, Y., & Michailidis, G. (2019). Likelihood inference for large scale stochastic blockmodels with covariates based on a divide-and-conquer parallelizable algorithm with communication. Journal of Computational and Graphical Statistics, 28, 609619.CrossRefGoogle ScholarPubMed
Salter-Townshend, M., & McCormick, T. H. (2017). Latent space models for multiview network data. The Annals of Applied Statistics, 11 1217.CrossRefGoogle ScholarPubMed
Salter-Townshend, M., & Murphy, T. B. (2013). Variational Bayesian inference for the latent position cluster model for network data. Computational Statistics and Data Analysis, 57, 661671.CrossRefGoogle Scholar
Sarkar, P., & Moore, A. W. (2006). Dynamic social network analysis using latent space models. In Advances in neural information processing systems (pp. 1145–1152).Google Scholar
Schmittmann, V. D., Cramer, A. O., Waldorp, L. J., Epskamp, S., Kievit, R. A., & Borsboom, D. (2013). Deconstructing the construct: A network perspective on psychological phenomena. New Ideas in Psychology, 31, 4353.CrossRefGoogle Scholar
Sewell, D. K., & Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110, 16461657.CrossRefGoogle Scholar
Sewell, D. K., & Chen, Y. (2016). Latent space models for dynamic networks with weighted edges. Social Networks, 44, 105116.CrossRefGoogle Scholar
Shalizi, C. R., & Thomas, A. C. (2011). Homophily and contagion are generically confounded in observational social network studies. Sociological Methods and Research, 40, 211239.CrossRefGoogle ScholarPubMed
Smith, A. L., Asta, D. M., & Calder, C. A. (2019). The geometry of continuous latent space models for network data. Statistical Science: A Review Journal of the Institute of Mathematical Statistics, 34 428.CrossRefGoogle ScholarPubMed
Spearman, C. (1904). “General intelligence” objectively determined and measured. American Journal of Psychology, 5, 201–293.CrossRefGoogle Scholar
Sweet, T. M. (2015). Incorporating covariates into stochastic blockmodels. Journal of Educational and Behavioral Statistics, 40, 635664.CrossRefGoogle Scholar
Sweet, T. M. (2016). Social network methods for the educational and psychological sciences. Educational Psychologist, 51, 381394.CrossRefGoogle Scholar
Sweet, T., & Adhikari, S. (2020). A latent space network model for social influence. Psychometrika 1–24.CrossRefGoogle Scholar
VanderWeele, T. J. (2011). Sensitivity analysis for contagion effects in social networks. Sociological Methods and Research, 40, 240255.CrossRefGoogle ScholarPubMed
VanderWeele, T. J., & An, W. (2013). Social networks and causal inference. In Handbook of causal analysis for social research (pp. 353–374). Springer.CrossRefGoogle Scholar
Wang, S. (2019). Joint analysis of social and item response networks with latent space models, Master thesis, The Ohio State University.Google Scholar
Wang, S. (2021a). Recent integrations of latent variable network modeling with psychometric models. Frontiers in Psychology 12.CrossRefGoogle Scholar
Wang, S. (2021b). JLSM: Joint latent space model for social networks and attributes. Joint latent space models for social networks and attributes using a fast inference approach.Google Scholar
Wang, S., & Edgerton, J. (2022). Resilience to stress in bipartite networks: Application to the Islamic State recruitment network. Journal of Complex Networks, 10, cnac017.CrossRefGoogle Scholar
Weng, H., & Feng, Y. (2016). Community detection with nodal information. arXiv preprint arXiv:1610.09735.Google Scholar
Xu, K. S., Kliger, M., & Hero Iii, A. O. (2014). Adaptive evolutionary clustering. Data Mining and Knowledge Discovery, 28, 304336.CrossRefGoogle Scholar
Yan, B., & Sarkar, P. (2020). Covariate regularized community detection in sparse graphs. Journal of the American Statistical Association 1–12.Google Scholar
Yang, X., Guo, Y., Liu, Y., & Steck, H. (2014). A survey of collaborative filtering based social recommender systems. Computer Communications, 41, 110.CrossRefGoogle Scholar
Zhang, Y., Levina, E., & Zhu, J. (2016). Community detection in networks with node features. Electronic Journal of Statistics, 10, 31533178.CrossRefGoogle Scholar
Zhang, X., Xue, S., & Zhu, J. (2020). A flexible latent space model for multilayer networks. In International conference on machine learning (pp. 11288–11297). PMLR.Google Scholar
Agarwal, A., & Xue, L. (2020). Model-based clustering of nonparametric weighted networks with application to water pollution analysis. Technometrics, 62, 161172.CrossRefGoogle ScholarPubMed
Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2008). Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 9, 19812014.Google ScholarPubMed
Arroyo, J., Athreya, A., Cape, J., Chen, G., Priebe, C. E., & Vogelstein, J. T. (2019). Inference for multiple heterogeneous networks with a common invariant subspace. arXiv preprint arXiv:1906.10026 Google Scholar
Attias, H. (1999). Inferring parameters and structure of latent variable models by variational Bayes. In Proceedings of the fifteenth conference on uncertainty in artificial intelligence (pp. 2130). Morgan Kaufmann Publishers Inc.Google Scholar
Austin, A., Linkletter, C., & Wu, Z. (2013). Covariate-defined latent space random effects model. Social Networks, 35, 338346.CrossRefGoogle Scholar
Barbillon, P., Donnet, S., Lazega, E., & Bar-Hen, A. (2015). Stochastic block models for multiplex networks: An application to networks of researchers. arXiv preprint arXiv:1501.06444 Google Scholar
Beal, M. J., et al. (2003). Variational algorithms for approximate Bayesian inference. University of London.Google Scholar
Beal, M. J., Ghahramani, Z., et al. Variational Bayesian learning of directed graphical models with hidden variables Bayesian Analysis. (2006 1, 793831.CrossRefGoogle Scholar
Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112, 859877.CrossRefGoogle Scholar
Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53, 605634.CrossRefGoogle ScholarPubMed
Borsboom, D., & Cramer, A. O. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91121.CrossRefGoogle Scholar
Bramoullé, Y., Djebbari, H., & Fortin, B. (2009). Identification of peer effects through social networks. Journal of Econometrics, 150, 4155.CrossRefGoogle Scholar
Celisse, A., Daudin, J. J., & Pierre, L. (2012). Consistency of maximum-likelihood and variational estimators in the stochastic block model. Electronic Journal of Statistics, 6, 18471899.CrossRefGoogle Scholar
Che, C., Jin, I. H., & Zhang, Z. (2021). Network mediation analysis using model-based eigenvalue decomposition. Structural Equation Modeling: A Multidisciplinary Journal, 28, 148161.CrossRefGoogle Scholar
Cho, Y.-S., Ver Steeg, G., Ferrara, E., & Galstyan, A. (2016). Latent space model for multi-modal social data. In Proceedings of the 25th international conference on world wide web (pp. 447–458).CrossRefGoogle Scholar
D’Angelo, S., Alfò, M., & Murphy, T. B. (2018). Node-specific effects in latent space modelling of multidimensional networks. In 49th scientific meeting of the Italian Statistical Society.Google Scholar
D’Angelo, S., Alfò, M., & Brendan Murphy, T. (2020). Modeling node heterogeneity in latent space models for multidimensional networks. Statistica Neerlandica, 74, 324341.CrossRefGoogle Scholar
D’Angelo, S., Alfò, M., & Fop, M. (2020). Model-based clustering for multivariate networks. arXiv preprint arXiv:2001.05260 Google Scholar
Daudin, J. J., Picard, F., & Robin, S. (2008). A mixture model for random graphs. Statistics and Computing, 18, 173183.CrossRefGoogle Scholar
Dean, D. O., Bauer, D. J., & Prinstein, M. J. (2017). Friendship dissolution within social networks modeled through multilevel event history analysis. Multivariate Behavioral Research, 52, 271289.CrossRefGoogle ScholarPubMed
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 1–38.CrossRefGoogle Scholar
Dorans, N., & Drasgow, F. (1978). Alternative weighting schemes for linear prediction. Organizational Behavior and Human Performance, 21, 316345.CrossRefGoogle Scholar
Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network pschometrics: Combining network and latent variable models. Psychometrika, 82, 904927.CrossRefGoogle ScholarPubMed
Fosdick, B. K. (2013). Modeling Heterogeneity within and between Matrices and Arrays, Ph.D. thesis.Google Scholar
Fosdick, B. K., & Hoff, P. D. (2015). Testing and modeling dependencies between a network and nodal attributes. Journal of the American Statistical Association, 110, 10471056.CrossRefGoogle ScholarPubMed
Frank, K. A., Zhao, Y., & Borman, K. (2004). Social capital and the diffusion of innovations within organizations: The case of computer technology in schools. Sociology of Education, 77, 148171.CrossRefGoogle Scholar
Fratiglioni, L., Wang, H.-X., Ericsson, K., Maytan, M., & Winblad, B. (2000). Influence of social network on occurrence of dementia: A community-based longitudinal study. The Lancet, 355, 13151319.CrossRefGoogle ScholarPubMed
Frey, M. C., & Detterman, D. K. (2004). Scholastic assessment or g? The relationship between the scholastic assessment test and general cognitive ability. Psychological Science, 15, 373378.CrossRefGoogle ScholarPubMed
Friel, N., Rastelli, R., Wyse, J., & Raftery, A. E. (2016). Interlocking directorates in Irish companies using a latent space model for bipartite networks. Proceedings of the National Academy of Sciences, 113, 66296634.CrossRefGoogle ScholarPubMed
Fujimoto, K., Wang, P., & Valente, T. W. (2013). The decomposed affiliation exposure model: A network approach to segregating peer influences from crowds and organized sports. Network Science, 1, 154169.CrossRefGoogle Scholar
Goldsmith-Pinkham, P., & Imbens, G. W. (2013). Social networks and the identification of peer effects. Journal of Business and Economic Statistics, 31, 253264.CrossRefGoogle Scholar
Gollini, I. (2015). lvm4net: Latent variable models for networks. Latent variable models for network data using fast inferential procedures.Google Scholar
Gollini, I., & Murphy, T. B. (2016). Joint modeling of multiple network views. Journal of Computational and Graphical Statistics, 25, 246265.CrossRefGoogle Scholar
Gormley, I. C., & Murphy, T. B. (2010). A mixture of experts latent position cluster model for social network data. Statistical Methodology, 7, 385405.CrossRefGoogle Scholar
Guhaniyogi, R., Rodriguez, A., et al. Joint modeling of longitudinal relational data and exogenous variables Bayesian Analysis. (2020 15, 477503.CrossRefGoogle Scholar
Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., & Ofek-Koifman, S. (2009). Personalized recommendation of social software items based on social relations. In Proceedings of the third ACM conference on Recommender systems (pp. 53–60).CrossRefGoogle Scholar
Handcock, M. S., Raftery, A. E., & Tantrum, J. M. (2007). Model-based clustering for social networks. Journal of the Royal Statistical Society Series A, 170, 301354.CrossRefGoogle Scholar
Handcock, M. S., Raftery, A. E., & Tantrum, J. M. (2007). Model-based clustering for social networks. Journal of the Royal Statistical Society: Series A (Statistics in Society), 170, 301354.CrossRefGoogle Scholar
Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. Journal of the American Statistical Association, 100, 286295.CrossRefGoogle Scholar
Hoff, P. (2008). Modeling homophily and stochastic equivalence in symmetric relational data. In Advances in neural information processing systems (pp. 657–664).Google Scholar
Hoff, P. D. (2009). Multiplicative latent factor models for description and prediction of social networks. Computational and Mathematical Organization Theory, 15 261.CrossRefGoogle Scholar
Hoff, P. D. (2018). Additive and multiplicative effects network models. arXiv preprint arXiv:1807.08038 Google Scholar
Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association, 97, 10901098.CrossRefGoogle Scholar
Huang, S., & Feng, Y. (2018). Pairwise covariates-adjusted block model for community detection. arXiv preprint arXiv:1807.03469 Google Scholar
Jensen, J. W. (1906). Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica, 30, 175193.CrossRefGoogle Scholar
Jeon, M., Jin, I. H., Schweinberger, M. and Baugh, S. (2021). Mapping unobserved item–respondent interactions: a latent space item response model with interaction map. psychometrika 86 378–403.CrossRefGoogle Scholar
Jin, I. H., & Jeon, M. (2018).. A doubly latent space joint model for local item and person dependence in the analysis of item response data. Psychometrika 1–25.Google Scholar
Jin, I. H., & Jeon, M. (2019). A doubly latent space joint model for local item and person dependence in the analysis of item response data. Psychometrika, 84, 236260.CrossRefGoogle ScholarPubMed
Kadushin, C. (1995). Friendship among the French financial elite. American Sociological Review 202–221.CrossRefGoogle Scholar
Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A., & Berlow, E. L. (2016). How structured is the entangled bank? The surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PLoS Biology, 14 CrossRefGoogle Scholar
Kim, Y., & Srivastava, J. (2007). Impact of social influence in e-commerce decision making. In Proceedings of the ninth international conference on electronic commerce (pp. 293–302). ACM.CrossRefGoogle Scholar
Kim, H.-N., Alkhaldi, A., El Saddik, A., & Jo, G.-S. (2011). Collaborative user modeling with usergenerated tags for social recommender systems. Expert Systems with Applications, 38, 84888496.CrossRefGoogle Scholar
Kim, B., Lee, K. H., Xue, L., & Niu, X. (2018). A review of dynamic network models with latent variables. Statistics Surveys, 12 105.CrossRefGoogle ScholarPubMed
Koenig, K. A., Frey, M. C., & Detterman, D. K. (2008). ACT and general cognitive ability. Intelligence, 36, 153160.CrossRefGoogle Scholar
Krivitsky, P. N., Handcock, M. S. (2008). Fitting position latent cluster models for social networks with latentnet. Journal of Statistical Software 24.CrossRefGoogle Scholar
Krivitsky, P. N., Handcock, M. S., Raftery, A. E., & Hoff, P. D. (2009). Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Social Networks, 31, 204213.CrossRefGoogle ScholarPubMed
Kwon, K. H., Stefanone, M. A., & Barnett, G. A. (2014). Social network influence on online behavioral choices: exploring group formation on social network sites. American Behavioral Scientist, 58, 13451360.CrossRefGoogle Scholar
Leenders, R. T. A. (2002). Modeling social influence through network autocorrelation: Constructing the weight matrix. Social Networks, 24, 2147.CrossRefGoogle Scholar
Liu, H., Jin, I. H., & Zhang, Z. (2018). Structural equation modeling of social networks: Specification, estimation, and application. Multivariate Behavioral Research 1–17.CrossRefGoogle Scholar
Liu, F., & Lee, H. J. (2010). Use of social network information to enhance collaborative filtering performance. Expert Systems with Applications, 37, 47724778.CrossRefGoogle Scholar
Liu, H., Jin, I. H., Zhang, Z., & Yuan, Y. (2021). Social network mediation analysis: A latent space approach. Psychometrika, 86, 272298.CrossRefGoogle ScholarPubMed
Lu, Y., Tsaparas, P., Ntoulas, A., & Polanyi, L. (2010). Exploiting social context for review quality prediction. In Proceedings of the 19th international conference on world wide web (pp. 691–700).CrossRefGoogle Scholar
Lusher, D., Koskinen, J., & Robins, G. (2013). Exponential random graph models for social networks: Theory, methods, and applications. Cambridge University Press Google Scholar
Ma, Z., Ma, Z., & Yuan, H. (2020). Universal latent space model fitting for large networks with edge covariates. Journal of Machine Learning Research, 21, 167.Google Scholar
Ma, H., Zhou, D., Liu, C., Lyu, M. R., & King, I. (2011). Recommender systems with social regularization. In Proceedings of the fourth ACM international conference on Web search and data mining (pp. 287–296).CrossRefGoogle Scholar
Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R., Waldorp, L., Maas, H. V. D., & Maris, G. (2018). An introduction to network psychometrics: Relating Ising network models to item response theory models. Multivariate Behavioral Research, 53, 1535.CrossRefGoogle ScholarPubMed
Matias, C., & Miele, V. (2016). Statistical clustering of temporal networks through a dynamic stochastic block model. Journal of the Royal Statistical Society: Series B (Statistical Methodology).Google Scholar
McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415444.CrossRefGoogle Scholar
Mele, A., Hao, L., Cape, J., & Priebe, C. E. (2019). Spectral inference for large Stochastic Blockmodels with nodal covariates. arXiv preprint arXiv:1908.06438 CrossRefGoogle Scholar
Mercken, L., Snijders, T. A., Steglich, C., Vartiainen, E., & De Vries, H. (2010). Dynamics of adolescent friendship networks and smoking behavior. Social Networks, 32, 7281.CrossRefGoogle Scholar
Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., & Bhattacharjee, B. (2007). Measurement and analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement (pp. 29–42).CrossRefGoogle Scholar
Murdoch, D., Chow, E., Murdoch, M. D., & Suggests, M. (2020). Package ‘ellipse’. American Statistician, 50, 178180.CrossRefGoogle Scholar
Palestro, J. J., Bahg, G., Sederberg, P. B., Lu, Z.-L., Steyvers, M., & Turner, B. M. (2018). A tutorial on joint models of neural and behavioral measures of cognition. Journal of Mathematical Psychology, 84, 2048.CrossRefGoogle Scholar
Paul, S., & Chen, Y. (2016). Consistent community detection in multi-relational data through restricted multi-layer stochastic blockmodel. Electronic Journal of Statistics, 10, 38073870.CrossRefGoogle Scholar
Paul, S., & Chen, Y. (2020). Spectral and matrix factorization methods for consistent community detection in multi-layer networks. The Annals of Statistics, 48, 230250.CrossRefGoogle Scholar
Robins, G., Pattison, P., & Elliott, P. (2001). Network models for social influence processes. Psychometrika, 66, 161189.CrossRefGoogle Scholar
Roy, S., Atchadé, Y., & Michailidis, G. (2019). Likelihood inference for large scale stochastic blockmodels with covariates based on a divide-and-conquer parallelizable algorithm with communication. Journal of Computational and Graphical Statistics, 28, 609619.CrossRefGoogle ScholarPubMed
Salter-Townshend, M., & McCormick, T. H. (2017). Latent space models for multiview network data. The Annals of Applied Statistics, 11 1217.CrossRefGoogle ScholarPubMed
Salter-Townshend, M., & Murphy, T. B. (2013). Variational Bayesian inference for the latent position cluster model for network data. Computational Statistics and Data Analysis, 57, 661671.CrossRefGoogle Scholar
Sarkar, P., & Moore, A. W. (2006). Dynamic social network analysis using latent space models. In Advances in neural information processing systems (pp. 1145–1152).Google Scholar
Schmittmann, V. D., Cramer, A. O., Waldorp, L. J., Epskamp, S., Kievit, R. A., & Borsboom, D. (2013). Deconstructing the construct: A network perspective on psychological phenomena. New Ideas in Psychology, 31, 4353.CrossRefGoogle Scholar
Sewell, D. K., & Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110, 16461657.CrossRefGoogle Scholar
Sewell, D. K., & Chen, Y. (2016). Latent space models for dynamic networks with weighted edges. Social Networks, 44, 105116.CrossRefGoogle Scholar
Shalizi, C. R., & Thomas, A. C. (2011). Homophily and contagion are generically confounded in observational social network studies. Sociological Methods and Research, 40, 211239.CrossRefGoogle ScholarPubMed
Smith, A. L., Asta, D. M., & Calder, C. A. (2019). The geometry of continuous latent space models for network data. Statistical Science: A Review Journal of the Institute of Mathematical Statistics, 34 428.CrossRefGoogle ScholarPubMed
Spearman, C. (1904). “General intelligence” objectively determined and measured. American Journal of Psychology, 5, 201–293.CrossRefGoogle Scholar
Sweet, T. M. (2015). Incorporating covariates into stochastic blockmodels. Journal of Educational and Behavioral Statistics, 40, 635664.CrossRefGoogle Scholar
Sweet, T. M. (2016). Social network methods for the educational and psychological sciences. Educational Psychologist, 51, 381394.CrossRefGoogle Scholar
Sweet, T., & Adhikari, S. (2020). A latent space network model for social influence. Psychometrika 1–24.CrossRefGoogle Scholar
VanderWeele, T. J. (2011). Sensitivity analysis for contagion effects in social networks. Sociological Methods and Research, 40, 240255.CrossRefGoogle ScholarPubMed
VanderWeele, T. J., & An, W. (2013). Social networks and causal inference. In Handbook of causal analysis for social research (pp. 353–374). Springer.CrossRefGoogle Scholar
Wang, S. (2019). Joint analysis of social and item response networks with latent space models, Master thesis, The Ohio State University.Google Scholar
Wang, S. (2021a). Recent integrations of latent variable network modeling with psychometric models. Frontiers in Psychology 12.CrossRefGoogle Scholar
Wang, S. (2021b). JLSM: Joint latent space model for social networks and attributes. Joint latent space models for social networks and attributes using a fast inference approach.Google Scholar
Wang, S., & Edgerton, J. (2022). Resilience to stress in bipartite networks: Application to the Islamic State recruitment network. Journal of Complex Networks, 10, cnac017.CrossRefGoogle Scholar
Weng, H., & Feng, Y. (2016). Community detection with nodal information. arXiv preprint arXiv:1610.09735.Google Scholar
Xu, K. S., Kliger, M., & Hero Iii, A. O. (2014). Adaptive evolutionary clustering. Data Mining and Knowledge Discovery, 28, 304336.CrossRefGoogle Scholar
Yan, B., & Sarkar, P. (2020). Covariate regularized community detection in sparse graphs. Journal of the American Statistical Association 1–12.Google Scholar
Yang, X., Guo, Y., Liu, Y., & Steck, H. (2014). A survey of collaborative filtering based social recommender systems. Computer Communications, 41, 110.CrossRefGoogle Scholar
Zhang, Y., Levina, E., & Zhu, J. (2016). Community detection in networks with node features. Electronic Journal of Statistics, 10, 31533178.CrossRefGoogle Scholar
Zhang, X., Xue, S., & Zhu, J. (2020). A flexible latent space model for multilayer networks. In International conference on machine learning (pp. 11288–11297). PMLR.Google Scholar
Supplementary material: File

Wang et al. supplementary material

Wang et al. supplementary material
Download Wang et al. supplementary material(File)
File 574.2 KB