Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T03:39:52.704Z Has data issue: false hasContentIssue false

Latent Class Models for Nonmonotone Dichotomous Items

Published online by Cambridge University Press:  01 January 2025

Anton K. Formann*
Affiliation:
University of Vienna
*
Requests for reprints should be sent to Anton K. Formann, Institut für Psychologie, Universität Wien, Liebiggasse 5, A-1010 Wien, AUSTRIA.

Abstract

Starting from perfectly discriminating nonmonotone dichotomous items, a class of probabilistic models with or without response errors and with or without intrinsically unscalable respondents is described. All these models can be understood as simply restricted latent class analysis. Thus, the estimation and identifiability of the parameters (class sizes and item latent probabilities) as well as the chi-squared goodness-of-fit tests (Pearson and likelihood-ratio) are free of the problems. The applicability of the proposed variants of latent class models is demonstrated on real attitudinal data.

Type
Original Paper
Copyright
Copyright © 1988 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was supported by the Kulturamt der Stadt Wien, Magistratsabteilung 7.

The author wishes to thank the editor, Ivo W. Molenaar, as well as Clifford C. Clogg and the anonymous reviewers for their valuable comments on the earlier drafts of this paper.

References

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In Lord, F. M., Novick, M. R. (Eds.), Statistical theories of mental test scores, Reading/MA: Addison-Wesley.Google Scholar
Clogg, C. C. (1977). Unrestricted and restricted maximum likelihood latent structure analysis: A manual for users, University Park, PA: The Pennsylvania State University, Population Issues Research Center.Google Scholar
Clogg, C. C., Sawyer, D. O. (1981). A comparison of alternative models for analyzing the scalability of response patterns. In Leinhardt, S. (Eds.), Sociological methodology 1981 (pp. 240280). San Francisco: Jossey-Bass.Google Scholar
Davison, M. L. (1980). A psychological scaling model for testing order hypotheses. British Journal of Mathematical and Statistical Psychology, 33, 123141.CrossRefGoogle Scholar
Dayton, C. M., Macready, G. B. (1976). A probabilistic model for validation of behavioral hierarchies. Psychometrika, 41, 189204.CrossRefGoogle Scholar
Dayton, C. M., Macready, G. B. (1980). A scaling model with response errors and intrinsically unscalable respondents. Psychometrika, 45, 343356.CrossRefGoogle Scholar
Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 138.CrossRefGoogle Scholar
Formann, A. K. (1984). Die Latent-Class-Analyse. Einführung in Theorie und Anwendung, Weinheim: Beltz.Google Scholar
Formann, A. K. (1985). Constrained latent class models: Theory and applications. British Journal of Mathematical and Statistical Psychology, 38, 87111.CrossRefGoogle Scholar
Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215231.CrossRefGoogle Scholar
Goodman, L. A. (1975). A new model for scaling response patterns: An application of the quasi-independence concept. Journal of the American Statistical Association, 70, 755768.CrossRefGoogle Scholar
Guttman, L. (1950). The basis for scalogram analysis. In Stouffer, S. A., Guttman, L., Suchman, E. A., Lazarsfeld, P. F., Star, S. A., Clausen, J. A. (Eds.), Studies in social psychology in World War II, Vol. IV:Measurement and prediction, Princeton: Princeton University Press.Google Scholar
Jansen, P. G. W. (1983). Rasch analysis of attitudinal data, (Proefschrift) Nijmegen: 's-Gravenhage.Google Scholar
Lazarsfeld, P. F., Henry, N. W. (1968). Latent structure analysis, Boston: Houghton Mifflin.Google Scholar
Macready, G. B., Dayton, C. M. (1977). The use of probabilistic models in the assessment of mastery. Journal of Educational Statistics, 2, 99120.CrossRefGoogle Scholar
McHugh, R. B. (1956). Efficient estimation and local identifiability in latent class analysis. Psychometrika, 21, 331347.CrossRefGoogle Scholar
Proctor, C. H. (1970). A probabilistic formulation and statistical analysis of Guttman scaling. Psychometrika, 35, 7378.CrossRefGoogle Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests, Copenhagen: Paedagogiske Institut.Google Scholar
Rindskopf, D. (1983). A general framework for using latent class analysis to test hierarchical and nonhierarchical learning models. Psychometrika, 48, 8597.CrossRefGoogle Scholar
Sixtl, F. (1973). Probabilistic unfolding. Psychometrika, 38, 235248.CrossRefGoogle Scholar
Thurstone, L. L. (1929). Theory of attitude measurement. Psychological Review, 36, 222241.CrossRefGoogle Scholar
Torgerson, W. S. (1958). Theory and methods of scaling, New York: Wiley.Google Scholar