Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-07T19:10:30.688Z Has data issue: false hasContentIssue false

Mixtures of (Constrained) Ultrametric Trees

Published online by Cambridge University Press:  01 January 2025

Michel Wedel*
Affiliation:
University of Groningen
Wayne S. DeSarbo
Affiliation:
Pennsylvania State University
*
Requests for reprints should be send to: Michel Wedel, Faculty of Economics, University of Groningen, PO Box 800, 9700 AV Groningen, THE NETHERLANDS.

Abstract

This paper presents a new methodology concerned with the estimation of ultrametric trees calibrated on subjects' pairwise proximity judgments of stimuli, capturing subject heterogeneity using a finite mixture formulation. We assume that a number of unobserved classes of subjects exist, each having a different ultrametric tree structure underlying the pairwise proximity judgments. A new likelihood based estimation methodology is presented for those finite mixtures of ultrametric trees, that accommodates ultrametric as well as other external constraints. Various assumptions on the correlation of the error of the dissimilarities are accommodated. The performance of the method to recover known ultrametric tree structures is investigated on synthetic data. An empirical application to published data from Schiffman, Reynolds, and Young (1981) is provided. The ability to deal with external constraints on the tree-topology is demonstrated, and a comparison with an alternative clustering based method is made.

Type
Original Paper
Copyright
Copyright © 1998 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors wish to thank the Editor, Associate Editor, and two anonymous reviewers for their excellent comments and suggestions which helped improve the manuscript.

References

Aitkin, M., & Rubin, D. B. (1985). Estimation and Hypothesis Testing in Finite Mixture Distributions. Journal of the Royal Statistical Society, 47, 6775.CrossRefGoogle Scholar
Allenby, G. M. (1989). A unified approach to identifying, estimating and testing demand structures with aggregate scanner data. Marketing Science, 8, 265280.CrossRefGoogle Scholar
Amemiya, T. (1985). Advanced economics, Cambridge: Harvard University Press.Google Scholar
Aptech, (1995). Constrained maximum likelihood, GAUSS manual, Maple Valley, WA: Aptech systems.Google Scholar
Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345370.CrossRefGoogle Scholar
Carroll, J. D. (1976). Spatial, non-spatial and hybrid models for scaling. Psychometrika, 41, 439463.CrossRefGoogle Scholar
Carroll, J. D., Clark, L., & DeSarbo, W. S. (1984). The representation of three-way proximities data by single and multiple tree structure models. Journal of Classification, 1, 2574.CrossRefGoogle Scholar
Carroll, J. D., & Pruzanski, S. (1980). Discrete and hybrid scaling models. In Lanterman, E. D., & Feger, H. (Eds.), Similarity and Choice (pp. 4869). Bern: Hans Huber.Google Scholar
Corter, J. E. (1996). Tree models of similarity, London: Sage.CrossRefGoogle Scholar
Corter, J. E., & Tversky, A. (1986). Extended Similarity Trees. Psychometrika, 51, 429451.CrossRefGoogle Scholar
Dempster, A. P., Laird, N. M., & Rubin, R. B. (1977). Maximum likelihood from incomplete data via the EM-algorithm. Journal of the Royal Statistical Society, 39, 138.CrossRefGoogle Scholar
DeSarbo, W. S., Mahajan, V. (1984). Constrained classification: the use of a priori information in cluster analysis. Psychometrika, 49, 187215.CrossRefGoogle Scholar
DeSarbo, W. S., Manrai, A. K., & Manrai, L. A. (1993). Non-Spatial Tree Models for the Assessment of Competitive Market Structure: An Integrated Review of the Marketing and Psychometric Literature. In Eliashberg, J., & Lilien, G. L. (Eds.), Handbooks in operations research and management science: Marketing (pp. 193257). Amsterdam: Elsevier Science Publishers.Google Scholar
DeSoete, G. (1983). A least squares algorithm for fitting trees to proximity data. Psychometrika, 48, 621626.CrossRefGoogle Scholar
Ferligoj, A., & Batagelj, V. (1982). Some types of clustering with relational constraints. Psychometrika, 47, 541552.CrossRefGoogle Scholar
Gordon, A. D. (1973). Classification in the presence of constraints. Biometrics, 29, 821827.CrossRefGoogle Scholar
Gordon, A. D. (1980). Classification, London: Chapman and Hall.Google Scholar
Hartigan, J. A. (1967). Representation of similarity matrices by trees. Journal of the American Statistical Association, 62, 11401158.CrossRefGoogle Scholar
Jamshidian, M., & Bentler, P. M. (1993). A modified Newtone method for constrained estimation in covariance structure analysis. Computational Statistics and Data Analysis, 15, 133146.CrossRefGoogle Scholar
Johnson, S. C. (1967). Hierarchical Clustering Schemes. Psychometrika, 32, 241254.CrossRefGoogle ScholarPubMed
Lindsey, J. K. (1993). Models for repeated measurements, Oxford: Clarendon Press.Google Scholar
Morgan, B. T., & Ray, A. P. G. (1995). Non-uniqueness and inversion in cluster analysis. Applied Statistics, 44, 117134.CrossRefGoogle Scholar
Payne, R. W. et al. (1993). GENSTAT 5 Reference manual, Oxford: Clarendon Press.CrossRefGoogle Scholar
Ramsay, J. O. (1977). Maximum likelihood estimation in multidimensional scaling. Psychometrika, 42, 241266.CrossRefGoogle Scholar
Rao, V. R., & Sabavala, D. J. (1981). Inference of hierarchical choice processes from panel data. Journal of Consumer Research, 8, 8596.CrossRefGoogle Scholar
Roux, M. (1987). Techniques of Approximation for Building Two Tree Structures. Proceedings of the Franco-Japanese Scientific Seminar: Recent Developments in Clustering and Data-Analysis, 4, 127146.Google Scholar
Sattah, S., & Tversky, A. (1977). Additive Similarity Trees. Psychometrika, 42, 319345.CrossRefGoogle Scholar
Scales, L. E. (1985). Introduction to non-linear optimization, London: MacMillan.CrossRefGoogle Scholar
Schiffman, S. S., & Reynolds, M. L., Young, F. W. (1981). Introduction to multidimensional Scaling, London: Academic Press.Google Scholar
Srb, A. M., Owen, R. D., & Edgar, R. S. (1965). General genetics, San Francisco: Freeman.Google Scholar
Titterington, D. M., & Smith, A. F. M., Makov, U. E. (1905). Statistical analysis of finite mixture distributions, New York: John Wiley.Google Scholar
Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327352.CrossRefGoogle Scholar
Wedel, M., & DeSarbo, W. S. (1994). A Review of Recent Developments in Latent Class Regression Models. In Bagozzi, R. P. (Eds.), Advanced methods of marketing research (pp. 352388). Cambridge: Blackwell.Google Scholar
Wedel, M., & DeSarbo, W. S. (1995). A mixture likelihood approach for generalized linear models. Journal of Classification, 12, 2156.CrossRefGoogle Scholar
Wedel, M., & DeSarbo, W. S. (1996). An exponential family mixture MDS methodology for simultaneous segmentation and product positioning. Journal of Business and Economic Statistics, 14, 447459.CrossRefGoogle Scholar
Wedel, M., & Kamakura, W. A. (1997). Market segmentation: Conceptual and mathodological foundations, Dordrecht: Kluwer.Google Scholar