Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-08T04:38:58.688Z Has data issue: false hasContentIssue false

On the Construction of all Factors of the Model for Factor Analysis

Published online by Cambridge University Press:  01 January 2025

Wim P. Krijnen*
Affiliation:
University of Amsterdam
*
Requests for reprints should be sent to Wim Krijnen, Developmental Psychology, University of Amsterdam, Roetersstraat 15, 1018 WB Amsterdam, THE NETHERLANDS. E-Mail: wim.krijnen@hetnet.nl

Abstract

A construction method is given for all factors that satisfy the assumptions of the model for factor analysis, including partially determined factors where certain error variances are zero. Various criteria for the seriousness of indeterminacy are related. It is shown that Green's (1976) conjecture holds: For a linear factor predictor the mean squared error of prediction is constant over all possible factors. A simple and general geometric interpretation of factor indeterminacy is given on the basis of the distance between multiple factors. It is illustrated that variable elimination can have a large effect on the seriousness of factor indeterminacy. A simulation study reveals that if the mean square error of factor prediction equals .5, then two thirds of the persons are “correctly” selected by the best linear factor predictor.

Type
Articles
Copyright
Copyright © 2002 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

I would like to thank Willem Schaafsma for useful discussions pertaining to the model for factor analysis. I am indebted to Peter Molenaar and Conor Dolan for their comments on the manuscript. Additionally, I thank the reviewers for the constructive remarks on an earlier draft of the paper.

References

Anderson, T.W. (1984). An introduction to multivariate statistical analysis. New York, NY: Wiley.Google Scholar
Anderson, T.W., & Rubin, H. (1956). Statistical inference in factor analysis. Proceedings of the Third Berkeley Symposium, 5, 111150.Google Scholar
Apostol, T.M. (1974). Mathematical analysis 2nd ed., Reading, MA: Addison-Wesley.Google Scholar
Bargmann, R.E. (1957). A study of independence and dependence in multivariate normal analysis. Chapel Hill, NC: University of North Carolina, Institute of Statistics.Google Scholar
Bartholomew, D.J. (1996). Response to Dr. Maraun's first reply to discussion of his paper. Multivariate Behavioral Research, 31, 631636.CrossRefGoogle ScholarPubMed
Browne, M.W. (1968). A comparison of factor analytic techniques. Psychometrika, 33, 267334.CrossRefGoogle ScholarPubMed
Capińsky, M., & Kopp, E. (1999). Measure, integral and probability. London, U.K.: Springer.CrossRefGoogle Scholar
Elffers, H., Bethlehem, J., & Gill, R.D. (1978). Indeterminacy problems and the interpretation of factor analysis results. Statistica Neerlandica, 32, 181199.CrossRefGoogle Scholar
Green, B.F. (1976). On the factor score controversy. Psychometrika, 41, 263266.CrossRefGoogle Scholar
Guttman, L. (1955). The determinacy of factor score matrices with implications for five other basic problems of common-factor theory. The British Journal of Statistical Psychology, 8, 6581.CrossRefGoogle Scholar
Harris, C.W. (1967). On factors and factor scores. Psychometrika, 32, 363379.CrossRefGoogle Scholar
Heerman, E.F. (1964). The geometry of factor indeterminacy. Psychometrika, 29, 371381.CrossRefGoogle Scholar
Howe, W.G. (1955). Some contributions to factor analysis (Rep. No. ORNL-1919). Oak Ridge, TN: Oak Ridge National Laboratory.CrossRefGoogle Scholar
Jöreskog, K.G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 32, 443482.CrossRefGoogle Scholar
Kano, Y. (1986). A condition for the regression predictor to be consistent in a single common factor model. British Journal of Mathematical and Statistical Psychology, 39, 221227.CrossRefGoogle Scholar
Kestelman, H. (1952). The fundamental equation of factor analysis. The British Journal of Statistical Psychology, 5, 16.CrossRefGoogle Scholar
Krijnen, W.P. (1996). Algorithms for unweighted least squares factor analysis. Computational Statistics and Data Analysis, 21(2), 133147.CrossRefGoogle Scholar
Krijnen, W.P. (2001). Convergence in mean square of factor predictors. Manuscript submitted for publication.Google Scholar
Krijnen, W.P., Dijkstra, T.K., & Gill, R.D. (1998). Conditions for factor (in)determinacy in factor analysis. Psychometrika, 63, 359367.CrossRefGoogle Scholar
Krijnen, W.P., Wansbeek, T.J., & ten Berge, J.M.F. (1996). Best linear predictors for factor scores. Communications in Statistics: Theory and Methods, 25, 30133025.CrossRefGoogle Scholar
Lawley, D.N., & Maxwell, A.E. (1971). Factor analysis as a statistical method. Durban, South Africa: Lawrence Erlbaum.Google Scholar
Lee, S.Y. (1980). Estimation of covariance structure models with parameters subject to functional restraints. Psychometrika, 45, 309324.CrossRefGoogle Scholar
Luenberger, D.G. (1969). Optimization by vector space methods. New York, NY: John Wiley.Google Scholar
Magnus, J.R., & Neudecker, H. (1988). Matrix differential calculus with applications in statistics and economics. Chichester, U.K.: John Wiley and Sons.Google Scholar
Maraun, M.D. (1996). Methaphor taken as math: Indeterminacy in the factor analysis model. Multivariate behavioral Research, 31, 517538.CrossRefGoogle Scholar
McDonald, R.P. (1974). The measurement of factor indeterminacy. Psychometrika, 39, 203222.CrossRefGoogle Scholar
McDonald, R.P. (1996). Latent traits and the possibility of motion. Multivariate Behavioral Research, 31, 593601.CrossRefGoogle ScholarPubMed
McDonald, R.P., & Bolt, D.M. (1998). The determinacy of variables in structural equation models. Multivariate Behavioral Research, 33, 385401.CrossRefGoogle ScholarPubMed
McDonald, R.P., & Burr, E.J. (1967). A comparison of four methods of constructing factor scores. Psychometrika, 32, 381401.CrossRefGoogle Scholar
Meijer, E., & Wansbeek, T. (1999). Quadratic prediction of factor scores. Psychometrika, 64, 495507.CrossRefGoogle Scholar
Mulaik, S.A. (1976). Comments on “The measurement of factorial indeterminacy”. Psychometrika, 41, 249262.CrossRefGoogle Scholar
Mulaik, S.A. (1996). On Maraun's deconstructing of factor indeterminacy with constructed factors. Multivariate Behavioral Research, 31, 579592.CrossRefGoogle Scholar
Mulaik, S.A., & McDonald, R.P. (1978). The effect of additional variables on factor indeterminacy in models with a single common factor. Psychometrika, 43, 177192.CrossRefGoogle Scholar
Neudecker, H., & Satorra, A. (2000). On best affine prediction. Manuscript submitted for publication.Google Scholar
Numerical Algorithms Group (1995). NAG foundation toolbox for use with MATLAB. Natick, MA: The MathWorks.Google Scholar
Penrose, R. (1955). A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society, 51, 406413.CrossRefGoogle Scholar
Rudin, W. (1976). Principles of mathematical analysis 3rd ed., New York, NY: McGraw-Hill Inc..Google Scholar
Schneeweiss, H., & Mathes, H. (1995). Factor analysis and principal components. Journal of Multivariate Analysis, 55, 105124.CrossRefGoogle Scholar
Schönemann, P.H., & Wang, M-M. (1972). Some new results on factor indeterminacy. Psychometrika, 37, 6191.CrossRefGoogle Scholar
Steiger, J.H. (1979). Factor indeterminacy in the 1930's and the 1970's some interesting parallels. Psychometrika, 44, 157167.CrossRefGoogle Scholar
Steiger, J.H. (1996). Coming full circle in the history of factor indetermincy. Multivariate Behavioral Research, 31, 617630.CrossRefGoogle Scholar
ten Berge, J.M.F., & Nevels, K. (1977). A general solution to Mosier's oblique Procrustes problem. Psychometrika, 42, 593600.CrossRefGoogle Scholar
ten Berge, J.M.F., Krijnen, W.P., Wansbeek, T.J., & Shapiro, A. (1999). Some new results on correlation preserving factor scores prediction methods. Linear Algebra and its Applications, 289, 311318.CrossRefGoogle Scholar
Vittadini, G. (1989). Indeterminacy problems in the Lisrel model. Multivariate Behavioral Research, 24, 397414.CrossRefGoogle ScholarPubMed
Williams, J.S. (1978). A definition for the common-factor analysis model and the elimination of problems of factor score indeterminacy. Psychometrika, 43, 293306.CrossRefGoogle Scholar
Wilson, E.B. (1981). Review of the “Abilities of man, their nature and measurement”. Science, 67, 244248.CrossRefGoogle Scholar