Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T03:37:18.383Z Has data issue: false hasContentIssue false

On the Finiteness of the Weighted Likelihood Estimator of Ability

Published online by Cambridge University Press:  01 January 2025

David Magis*
Affiliation:
University of Liège
Norman Verhelst
Affiliation:
Eurometrics
*
Correspondence should be made to David Magis, Research Unit on Childhood, University of Liège, Building B32,Quartier Agora, Place des Orateurs 2, 4000 Liege, Belgium. Email: david.magis@ulg.ac.be

Abstract

The purpose of this note is to focus on the finiteness of the weighted likelihood estimator (WLE) of ability in the context of dichotomous and polytomous item response theory (IRT) models. It is established that the WLE always returns finite ability estimates. This general result is valid for dichotomous (one-, two-, three- and four-parameter logistic) IRT models, the class of polytomous difference models and divide-by-total models, independently of the number of items, the item parameters and the response patterns. Further implications of this result are outlined.

Type
Original paper
Copyright
Copyright © 2016 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic supplementary material The online version of this article (doi:10.1007/s11336-016-9518-9) contains supplementary material, which is available to authorized users.

References

Andrich, D.. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561573. doi:10.1007/BF02293814.CrossRefGoogle Scholar
Barton, M. A., & Lord, F. M. (1981). An upper asymptote for the three-parameter logistic item-response model. Princeton, NJ: Educational Testing Service (research report RR-81-20)..Google Scholar
Birnbaum, A.Lord, F. M., & Novick, M. R.. (1968). Some latent trait models and their use in inferring an examinee’s ability. Statistical theories of mental test scores. Reading, MA: Addison-Wesley 397479.Google Scholar
Bock, R. D.. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 2951. doi:10.1007/BF02291411.CrossRefGoogle Scholar
Boyd, A., Dodd, B., Choi, S.Nering, M. L., & Ostini, R.. (2010). Polytomous models in computerized adaptive testing. Handbook of polytomous item response theory models. New York: Routledge 229255.Google Scholar
Dodd, B. G., De Ayala, R. J., & Koch, W. R.. (1995). Computerized adaptive testing with polytomous items. Applied Psychological Measurement, 19, 522. doi:10.1177/014662169501900103.CrossRefGoogle Scholar
Embretson, S. E., & Reise, S. P., (2000). Item response theory for psychologists. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Magis, D.. (2015). A note on weighted likelihood and Jeffreys modal estimation of proficiency levels in polytomous item response models. Psychometrika, 80, 200204. doi:10.1007/s11336-013-9378-5.CrossRefGoogle ScholarPubMed
Magis, D.. (2016). Efficient standard errors formulas of ability estimators with dichotomous item response models. Psychometrika, 81, 184200. doi:10.1007/s11336-015-9443-3.CrossRefGoogle ScholarPubMed
Masters, G. N.. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149174. doi:10.1007/BF02296272.CrossRefGoogle Scholar
Muraki, E.. (1990). Fitting a polytomous item response model to Likert-type data. Applied Psychological Measurement, 14, 5971. doi:10.1177/014662169001400106.CrossRefGoogle Scholar
Muraki, E.. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16, 159176. doi:10.1177/014662169201600206.CrossRefGoogle Scholar
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores (Psychometric Monograph No. 17). Richmond, VA: Psychometric Society..Google Scholar
Samejima, F. (1998). Expansion of Warm’s weighted likelihood estimator of ability for the three-parameter logistic model to general discrete responses. Paper presented at the annual meeting of the National Council on Measurement in Education, San Diego CA..Google Scholar
Sinharay, S. (in press). Asymptotically correct standardization of person-fit statistics beyond dichotomous items. Psychometrika. doi:10.1007/s11336-015-9465-x.CrossRefGoogle Scholar
Sinharay, S., Wan, P., Choi, S. W., & Kim, D.. (2015). Assessing individual-level impact of interruptions during online testing. Journal of Educational Measurement, 52, 80105. doi:10.1111/jedm.12064.CrossRefGoogle Scholar
Thissen, D., & Steinberg, L.. (1986). A taxonomy of item response models. Psychometrika, 51, 567577. doi:10.1007/BF02295596.CrossRefGoogle Scholar
Wang, C.. (2015). On latent trait estimation in multidimensional compensatory item response models. Psychometrika, 80, 428449. doi:10.1007/s11336-013-9399-0.CrossRefGoogle ScholarPubMed
Warm, T. A.. (1989). Weighted likelihood estimation of ability in item response models. Psychometrika, 54, 427450. doi:10.1007/BF02294627.CrossRefGoogle Scholar
Warm, T. A.. (2007). Warm weighted likelihood estimates (WLE) of Rasch measures. Rasch Measurement Transactions, 21, 1094.Google Scholar
Supplementary material: File

Magis and Verhelst supplementary material

Magis and Verhelst supplementary material
Download Magis and Verhelst supplementary material(File)
File 1.7 KB