Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T03:31:00.475Z Has data issue: false hasContentIssue false

Tom Wansbeek and Erik Meijer. Measurement error and latent variables in econometrics. Amsterdam: Elsevier, 2000, 440 pp., $93.

Review products

Tom Wansbeek and Erik Meijer. Measurement error and latent variables in econometrics. Amsterdam: Elsevier, 2000, 440 pp., $93.

Published online by Cambridge University Press:  01 January 2025

Albert Maydeu-Olivares*
Affiliation:
University of Barcelona

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Reviews
Copyright
Copyright © 2003 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arminger, G. (1995). Specification and estimation of mean structures: Regression models. In Arminger, G., Clogg, C.C., Sobel, M.E. (Eds.), Handbook of statistical modeling for the social and behavioral sciences (pp. 77183). New York, NY: Plenum Press.CrossRefGoogle Scholar
Bartholomew, D.J., Knott, M. (1999). Latent variable models and factor analysis 2nd ed., London: Arnold.Google Scholar
Bekker, P.A., Merckens, A., Wansbeek, T.J. (1994). Identification, equivalent models and computer algebra. San Diego, CA: Academic Press.Google Scholar
Browne, M.W. (1974). Generalized least squares estimators in the analysis of covariance structures. South African Statistical Journal, 8, 124.Google Scholar
Browne, M.W. (1982). Covariance structures. In Hawkins, D.M. (Eds.), Topics in applied multivariate analysis (pp. 72141). Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
Browne, M.W., Arminger, G. (1995). Specification and estimation of mean and covariance structure models. In Arminger, G., Clogg, C.C., Sobel, M.E. (Eds.), Handbook of statistical modeling for the social and behavioral sciences (pp. 185249). New York, NY: Plenum Press.CrossRefGoogle Scholar
Chiang, C.L. (1956). On regular best asymptotically normal estimates. The Annals of Mathematical Statistics, 27, 336351.CrossRefGoogle Scholar
Ferguson, T.S. (1958). A method of generating best asymptotically normal estimates with application to the estimatoin of bacterial densities. The Annals of Mathematical Statistics, 29, 10461062.CrossRefGoogle Scholar
Ferguson, T.S. (1996). A course in large sample theory. London: Chapman & Hall.CrossRefGoogle Scholar
Godambe, V.P. (1991). Estimating functions. Oxford, U.K.: Clarendon Press.CrossRefGoogle Scholar
Hansen, L.P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50, 10291054.CrossRefGoogle Scholar
Kapteyn, A., Wansbeek, T. (1984). Errors in variables: Consistent adjusted least squares (CALS) estimation. Communications in Statistics—Theory and Methods, 13, 18111837.CrossRefGoogle Scholar
McFadden, D.L. (1989). A method of simulated moments for estimation of descrete responde models without numerical integration. Econometrica, 57, 9951025.CrossRefGoogle Scholar
Meijer, E. (1998). Structural equation models for nonnormal data. Leiden, The Netherlands: DSWO Press.Google Scholar
Satorra, A., Bentler, P.M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In von Eye, A., Clogg, C.C. (Eds.), Latent variable analysis: Applications to developmental research (pp. 399419). Thousand Oaks, CA: Sage.Google Scholar
Shapiro, A. (1983). Asymptotic distribution theory in the analysis of oovariance structures (a unified approach). South African Statistical Journal, 17, 3381.Google Scholar