Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T16:36:52.889Z Has data issue: false hasContentIssue false

An IRT Model with a Parameter-Driven Process for Change

Published online by Cambridge University Press:  01 January 2025

Frank Rijmen*
Affiliation:
Katholieke Universiteit Leuven, Belgium
Paul De Boeck
Affiliation:
Katholieke Universiteit Leuven, Belgium
Han L. J. van der Maas
Affiliation:
University of Amsterdam, The Netherlands
*
Requests for reprints should be set to frank.rijmen@psy.kuleuven.be

Abstract

An IRT model with a parameter-driven process for change is proposed. Quantitative differences between persons are taken into account by a continuous latent variable, as in common IRT models. In addition, qualitative interindividual differences and autodependencies are accounted for by assuming within-subject variability with respect to the parameters of the IRT model. In particular, the parameters of the IRT model are governed by an unobserved or “hidden'” homogeneous Markov process. The model includes the mixture linear logistic test model (Mislevy & Verhelst, 1990), the mixture Rasch model (Rost, 1990), and the Saltus model (Wilson, 1989) as specific instances. The model is applied to a longitudinal experiment on discontinuity in conservation acquisition (van der Maas, 1993).

Type
Theory and Methods
Copyright
Copyright © 2005 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Frank Rijmen was supported by the Fund for Scientific Research Flanders (FWO), the GOA/2000/02 granted by the Katholieke Universiteit Leuven to Paul De Boeck and Iven Van Mechelen, and the PDM/02/067 granted by the Katholieke Universiteit Leuven to Paul De Boeck.

References

Aitkin, M., Anderson, D., Hinde, J. (1981). Statistical modelling of data on teaching styles. Journal of the Royal Statistical Society, Series A, 144, 419461.CrossRefGoogle Scholar
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716723.CrossRefGoogle Scholar
Böckenholt, U. (1999). Measuring change: Mixed Markov models for ordinal panel data. British Journal of Mathematical and Statistical Psychology, 52, 125136.CrossRefGoogle ScholarPubMed
Collins, L.M., Fidler, P.L., Wugalter, S.E., Long, S.E. (1993). Goodness-of-fit testing for latent class models. Multivariate Behavioral Research, 28, 375389.CrossRefGoogle ScholarPubMed
Collins, L.M., Wugalter, S.E. (1992). Latent class models for stage-sequential dynamic latent variables. Multivariate Behavioral Research, 27, 131157.CrossRefGoogle Scholar
Cox, D.R., Snell, E.J. (1996). Analysis of binary data (2nd ed.). London: Chapman & Hall.Google Scholar
Dempster, A.P., Laird, N.M., Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 138.CrossRefGoogle Scholar
Eid, M., Hoffmann, L. (1998). Measuring variability and change with an item response model for polytomous variables. Journal of Educational and Behavioral Statistics, 23, 193215.CrossRefGoogle Scholar
Eid, M., Langeheine, R. (1999). The measurement of consistency and occasion specificity with latent class models: A new model and its applications to the measurement of affect. Psychological Methods, 4, 100116.CrossRefGoogle Scholar
Eid, M., Langeheine, R. (2003). Separating stable from variable individuals in longitudinal studies by mixture distribution models. Measurement, 1, 197206.Google Scholar
Fahrmeir, L., Tutz, G. (2001). Multivariate statistical modelling based on generalized linear models (2nd ed.). New York: Springer-Verlag.CrossRefGoogle Scholar
Field, D. (1987). A review of preschool conservation training: An analysis of analyses. Developmental Review, 7, 210251.CrossRefGoogle Scholar
Fischer, G.H. (1973). Linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359374.CrossRefGoogle Scholar
Formann, A.K. (1985). Constrained latent class models: Theory and applications. The British Journal of Mathematical and Statistical Psychology, 38, 87111.CrossRefGoogle Scholar
Formann, A.K. (1992). Linear logistic latent class analysis for polytomous data. Journal of the American Statistical Association, 418, 476486.CrossRefGoogle Scholar
Gilmore, R. (1981). Catastrophe theory for scientists and engineers. New York: Wiley.Google Scholar
Goodman, L.A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215231.CrossRefGoogle Scholar
Hagenaars, J.A. (1998). Categorical causal modeling: Latent class analysis and directed log-linear models with latent variables. Sociological Methods and Research, 26, 436486.CrossRefGoogle Scholar
Humphreys, K. (1998). The latent Markov chain with multivariate random effects. Sociological Methods and Research, 26, 269299.CrossRefGoogle Scholar
Jansen, B.R.J., van der Maas, H.L.J. (2001). Evidence for the phase transition from Rule I to Rule II on the balance scale task. Developmental Review, 21, 450494.CrossRefGoogle Scholar
Langeheine, R., Pannekoek, J., van de Pol, F. (1996). Bootstrapping goodness-of-fit measures in categorical data analysis. Sociological Methods and Research, 24, 492516.CrossRefGoogle Scholar
Langeheine, R., van de Pol, F. (1990). A unifying framework for Markov modelling in discrete space and discrete time. Sociological Methods and Research, 18, 416441.CrossRefGoogle Scholar
Langeheine, R., & van de Pol, F. (1994). Discrete-time mixed Markov latent class models. In Dale, A., & Davies, R.B. (Eds.), Analyzing social and political change: A casebook of methods. London: Sage.Google Scholar
Little, R.J.A., Rubin, D.B. (1987). Statistical analysis with missing data. New York: Wiley.Google Scholar
McHugh, R.B. (1956). Efficient estimation and local identification in latent class analysis. Psychometrika, 21, 331347.CrossRefGoogle Scholar
McLachlan, G., Krishnan, T. (1997). The EM algorithm and extensions. New York: Wiley.Google Scholar
McLachlan, G., Peel, D. (2000). Finite mixture models. New York: Wiley.CrossRefGoogle Scholar
Mislevy, R.J., Verhelst, N. (1990). Modeling item responses when different persons employ different solution strategies. Psychometrika, 55, 195215.CrossRefGoogle Scholar
Mislevy, R.J., Wilson, M. (1996). Marginal maximum likelihood estimation for a psychometric model of discontinuous development. Psychometrika, 61, 4171.CrossRefGoogle Scholar
Piaget, J. (1960). The general problems of the psychobiological development of the child. In Tanner, J.M., & Inhelder, B. (Eds.), Discussions on child development (Vol. 4). London: Tavistock.Google Scholar
Poulsen, C.S. (1990). Mixed Markov and latent Markov modeling applied to brand choice data. International Journal of Marketing, 7, 519.CrossRefGoogle Scholar
Read, T., Cressie, N. (1988). Goodness-of-fit statistics for discrete multivariate data. New York: Springer Verlag.CrossRefGoogle Scholar
Rijmen, F., De Boeck, P. (2003). A latent class model for individual differences in the interpretation of conditionals. Psychological Research, 67, 219231.CrossRefGoogle ScholarPubMed
Rijmen, F., Tuerlinckx, F., De Boeck, P., Kuppens, P. (2003). A nonlinear mixed model framework for IRT models. Psychological Methods, 8, 185205.CrossRefGoogle Scholar
Ross, S. (1996). Stochastic processes (2nd ed.). New York: Wiley.Google Scholar
Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271282.CrossRefGoogle Scholar
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph, 17.Google Scholar
Schwartz, G. (1978). Estimating the dimensions of a model. Annals of Statistics, 6, 461464.Google Scholar
Snijders, T., Bosker, R. (1999). An introduction to basic and advanced multilevel modeling. London: Sage.Google Scholar
Steyer, R., Ferring, D., Schmitt, M. (1992). States and traits in psychological assessment. European Journal of Psychological Assessment, 2, 7998.Google Scholar
Thom, R. (1975). Sructural stability and morphogenesis. Reading, MA: Benjamin.Google Scholar
Thomas, H., Hettmansperger, T.P. (2001). Modeling change in cognitive understanding with finite mixtures. Applied Statistics, 50, 435448.Google Scholar
van der Maas, H. (1993). Catastrophe analysis of stagewise cognitive development: Model, method and applications. Unpublished doctoral dissertation. University of Amsterdam.Google Scholar
van der Maas, H., Molenaar, P.C.M. (1992). Stagewise cognitive development: An application of catastrophe theory. Psychological Review, 99, 395417.CrossRefGoogle ScholarPubMed
van der Maas, H.L.J., & Molenaar, P.C.M. (1995). Catastrophe analysis of discontinuous development. In von Eye, A.A., & Clogg, C.C. (Eds.), Categorical variables in developmental research methods of analysis. San Diego, CA: Academic Press.Google Scholar
Verbeke, G. (1997). Linear mixed models for longitudinal data. In Verbeke, G., & Molenberghs, G. (Eds.), Linear mixed models in practice. New York: Springer-Verlag.CrossRefGoogle Scholar
Verhelst, N.D., Glas, C.A.W. (1993). A dynamic generalization of the Rasch model. Psychometrika, 58, 395415.CrossRefGoogle Scholar
von Davier, M. (1997). Bootstrapping goodness-of-fit statistics for sparse categorical data: Results of a Monte Carlo study. Methods of Psychological Research [On-line serial], 2, 2948. Available http://www.mpr-online.de/.Google Scholar
Wiggins, L.M. (1973). Panel analysis: Latent probability models for attitude and behavior processes. Amsterdam: Elsevier.Google Scholar
Wilson, M. (1989). Saltus: A psychometric model of discontinuity in cognitive development. Psychological Bulletin, 105, 276289.CrossRefGoogle Scholar