Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T01:04:24.007Z Has data issue: false hasContentIssue false

Bayesian Inferences of Latent Class Models with an Unknown Number of Classes

Published online by Cambridge University Press:  01 January 2025

Jia-Chiun Pan
Affiliation:
National Chung Cheng University
Guan-Hua Huang*
Affiliation:
National Chiao Tung University
*
Requests for reprints should be sent to Guan-Hua Huang, Institute of Statistics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan. E-mail: ghuang@stat.nctu.edu.tw

Abstract

This paper focuses on analyzing data collected in situations where investigators use multiple discrete indicators as surrogates, for example, a set of questionnaires. A very flexible latent class model is used for analysis. We propose a Bayesian framework to perform the joint estimation of the number of latent classes and model parameters. The proposed approach applies the reversible jump Markov chain Monte Carlo to analyze finite mixtures of multivariate multinomial distributions. In the paper, we also develop a procedure for the unique labeling of the classes. We have carried out a detailed sensitivity analysis for various hyperparameter specifications, which leads us to make standard default recommendations for the choice of priors. The usefulness of the proposed method is demonstrated through computer simulations and a study on subtypes of schizophrenia using the Positive and Negative Syndrome Scale (PANSS).

Type
Original Paper
Copyright
Copyright © 2013 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic Supplementary Material The online version of this article (doi:10.1007/s11336-013-9368-7) contains supplementary material, which is available to authorized users.

References

Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317332.CrossRefGoogle Scholar
American Psychiatric Association (1994). Diagnostic and statistical manual of mental disorders (DSM-IV) (4th ed.). Washington: American Psychiatric Press.Google Scholar
Bandeen-Roche, K., Miglioretti, D.L., Zeger, S.L., & Rathouz, P.J. (1997). Latent variable regression for multiple discrete outcomes. Journal of the American Statistical Association, 92, 13751386.CrossRefGoogle Scholar
Bartolucci, F., Mira, A., Scaccia, L. (2003). Answering two biological questions with a latent class model via MCMC applied to capture-recapture data. In Bacco, M.D., D’Amore, G., & Scalfari, F. (Eds.), Applied Bayesian statistical studies in biology and medicine (pp. 723). Dordrecht: Springer.Google Scholar
Carlin, B., & Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo methods. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 57, 473484.CrossRefGoogle Scholar
Celeux, G., Hurn, H., & Robert, C.P. (2000). Computational and inferential difficulties with mixture posterior distributions. Journal of the American Statistical Association, 95, 957970.CrossRefGoogle Scholar
Chen, W.J., Liu, S.K., Chang, C.J., Lien, Y.J., Chang, Y.H., & Hwu, H.G. (1998). Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. The American Journal of Psychiatry, 155, 12141220.CrossRefGoogle ScholarPubMed
Cheng, J.J., Ho, H., Chang, C.J., Lan, S.Y., & Hwu, H.G. (1996). Positive and negative syndrome scale (panss): establishment and reliability study of a Mandarin Chinese language version. Chin Psychiatry, 10, 251258.Google Scholar
Dayton, C.M., & Macready, G.B. (1988). Concomitant-variable latent-class models. Journal of the American Statistical Association, 83, 173178.CrossRefGoogle Scholar
Dellaportas, P., & Papageorgiou, I. (2006). Multivariate mixtures of normals with unknown number of components. Statistics and Computing, 16, 5768.CrossRefGoogle Scholar
Formann, A.K. (1992). Linear logistic latent class analysis for polytomous data. Journal of the American Statistical Association, 87, 476486.CrossRefGoogle Scholar
Garrett, E.S., & Zeger, S.L. (2000). Latent class model diagnosis. Biometrics, 56, 10551067.CrossRefGoogle ScholarPubMed
Geman, S., & Geman, D. (1993). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. Journal of Applied Statistics, 20, 2562.CrossRefGoogle Scholar
Geyer, C.J., & Møller, J. (1994). Simulation procedures and likelihood inference for spatial point processes. Scandinavian Journal of Statistics, 21, 359373.Google Scholar
Goodman, L.A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215231.CrossRefGoogle Scholar
Green, B.F. (1951). A general solution of the latent class model of latent structure analysis and latent profile analysis. Psychometrika, 16, 151166.CrossRefGoogle Scholar
Green, P.J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711732.CrossRefGoogle Scholar
Gruet, M.A., Philippe, A., & Robert, C.P. (1999). MCMC control spreadsheets for exponential mixture estimation. Journal of Computational and Graphical Statistics, 8, 298317.CrossRefGoogle Scholar
Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 59, 97109.CrossRefGoogle Scholar
Huang, G.H. (2005). Selecting the number of classes under latent class regression: a factor analytic analogue. Psychometrika, 70, 325345.CrossRefGoogle Scholar
Huang, G.H., & Bandeen-Roche, K. (2004). Building an identifiable latent variable model with covariate effects on underlying and measured variables. Psychometrika, 69, 532.CrossRefGoogle Scholar
Huang, G.H., Tsai, H.H., Hwu, H.G., Chen, C.H., Liu, C.C., Hua, M.S., & Chen, W.J. (2011). Patient subgroups of schizophrenia based on the positive and negative syndrome scale: composition and transition between acute and subsided disease states. Comprehensive Psychiatry, 52, 469478.CrossRefGoogle ScholarPubMed
Jasra, A., Holmes, C.C., & Stephens, D.A. (2005). Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science, 20, 5067.CrossRefGoogle Scholar
Kass, R.E., & Raftery, A.E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773795.CrossRefGoogle Scholar
Kay, S.R., Flszbein, A., & Opfer, L.A. (1987). The positive and negative syndrome scale (panss) for schizophrenia. Schizophrenia Bulletin, 13, 261276.CrossRefGoogle ScholarPubMed
Lazarsfeld, P.F., & Henry, N.W. (1968). Latent structure analysis. New York: Houghton-Mifflin.Google Scholar
Liu, S.K., Hsieh, M.H., Huang, T.J., Liu, C.M., Liu, C.C., Hua, M.S., Chen, W.J., & Hwu, G.H. (2006). Patterns and clinical correlates of neuropsychologic deficits in patients with schizophrenia. Journal of the Formosan Medical Association, 105, 978991.CrossRefGoogle ScholarPubMed
McCullagh, P., & Nelder, J.A. (1989). Generalized linear models (2nd ed.). London: Chapman and Hall.CrossRefGoogle Scholar
Meligkotsidou, L. (2007). Bayesian multivariate Poisson mixtures with an unknown number of components. Statistics and Computing, 17, 93107.CrossRefGoogle Scholar
Melton, B., Liang, K.Y., & Pulver, A.E. (2005). Extended latent class approach to the study of familial/sporadic forms of a disease: its application to the study of the heterogeneity of schizophrenia. Genetic Epidemiology, 11, 311327.CrossRefGoogle Scholar
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., & Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21, 10871091.CrossRefGoogle Scholar
Pandolfi, S., Bartolucci, F., & Friel, N. (2010). A generalization of the multiple-try Metropolis algorithm for Bayesian estimation and model selection. In Proceedings of the 13th international conference on artificial intelligence and statistics (AISTATS), Chia Laguna Resort, Sardinia, Italy (pp. 581588).Google Scholar
Richardson, S., & Green, P.J. (1997). On Bayesian analysis of mixtures with an unknown number of components. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 59, 731792.CrossRefGoogle Scholar
Ripley, B.D. (1977). Modelling spatial patterns. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 39, 172212.CrossRefGoogle Scholar
Robert, C.P., & Casella, G. (2004). Monte Carlo statistical methods (2nd ed.). New York: Springer.CrossRefGoogle Scholar
Rosvold, H.E., Mirsky, A.F., Sarason, I., Bransome, E.D. Jr., & Beck, L.H. (1956). A continuous performance test of brain damage. American Psychological Association, 20, 343350.Google Scholar
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461464.CrossRefGoogle Scholar
Sperrin, M., Jaki, T., & Wit, E. (2010). Probabilistic relabelling strategies for the label switching problem in Bayesian mixture models. Statistics and Computing, 20, 357366.CrossRefGoogle Scholar
Stephens, M. (2000). Dealing with label switching in mixture models. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 62, 795809.CrossRefGoogle Scholar
Viallefont, V., Richardson, S., & Green, P.J. (2002). Bayesian analysis of Poisson mixtures. Journal of Nonparametric Statistics, 14, 181202.CrossRefGoogle Scholar
Yao, W., & Lindsay, B.G. (2009). Bayesian mixture labeling by highest posterior density. Journal of the American Statistical Association, 104, 758767.CrossRefGoogle Scholar
Zeger, S.L., & Karim, M.R. (1991). Generalized linear models with random effects; a Gibbs sampling approach. Journal of the American Statistical Association, 86, 7986.CrossRefGoogle Scholar
Supplementary material: File

Pan and Huang supplementary material

Supplementary Information of Bayesian Inferences of Latent Class Models with an Unknown Number of Classes
Download Pan and Huang supplementary material(File)
File 9.7 MB