Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T10:45:19.577Z Has data issue: false hasContentIssue false

Bayesian Mixture Model of Extended Redundancy Analysis

Published online by Cambridge University Press:  01 January 2025

Minjung Kyung
Affiliation:
Duksung Women’s University
Ju-Hyun Park
Affiliation:
Dongguk University
Ji Yeh Choi*
Affiliation:
York University
*
Correspondence should be made to Ji Yeh Choi, Department of Psychology, York University, 4700 Keele St., Toronto, ON, Canada. Email: jychoi@yorku.ca

Abstract

Extended redundancy analysis (ERA), a generalized version of redundancy analysis (RA), has been proposed as a useful method for examining interrelationships among multiple sets of variables in multivariate linear regression models. As a limitation of the extant RA or ERA analyses, however, parameters are estimated by aggregating data across all observations even in a case where the study population could consist of several heterogeneous subpopulations. In this paper, we propose a Bayesian mixture extension of ERA to obtain both probabilistic classification of observations into a number of subpopulations and estimation of ERA models within each subpopulation. It specifically estimates the posterior probabilities of observations belonging to different subpopulations, subpopulation-specific residual covariance structures, component weights and regression coefficients in a unified manner. We conduct a simulation study to demonstrate the performance of the proposed method in terms of recovering parameters correctly. We also apply the approach to real data to demonstrate its empirical usefulness.

Type
Theory & Methods
Copyright
Copyright © 2021 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11336-021-09809-7.

References

Anderson, T. W., Estimating linear restrictions on regression coefficients for multivariate normal distributions Annals of Mathematical Statistics (1951). 22(3) 327351CrossRefGoogle Scholar
Benaglia, T., Chauveau, D., & Hunter, D., Young, D., mixtools: An R package for analyzing mixture models Journal of Statistical Software (2009). 32(6) 129CrossRefGoogle Scholar
Celeux, G., Forbes, F., Robert, C. P., & Titterington, D. M., (2006). Deviance information criteria for missing data models. Bayesian Analysis, 1(4), 651673. https://doi.org/10.1214/06-BA122CrossRefGoogle Scholar
Choi, J. Y., Kyung, M., Hwang, H., Park, J.-H., (2019). Bayesian extended redundancy analysis: A Bayesian approach to component-based regression with dimension reduction Multivariate Behavioral ResearchGoogle ScholarPubMed
Dauvier, B., Chevalier, N., & Blaye, A., (2012). Using finite mixture of GLMs to explore variability in children’s flexibility in a task-switching paradigm. Cognitive Development, 27(4), 440454. https://doi.org/10.1016/j.cogdev.2012.07.004CrossRefGoogle Scholar
Davies, P. T., Tso, M.K.-S., (1982). Procedures for reduced-rank regression Applied Statistics 31 244255CrossRefGoogle Scholar
Dempster, A. P., Laird, N. M., Rubin, D. B., (1977). Maximum likelihood from incomplete data via the EM algorithm Journal of the Royal Statistical Society: Series B (Methodological) 39(1) 122CrossRefGoogle Scholar
Diebolt, J., Robert, C. P., (1994). Estimation of finite mixture distributions through Bayesian sampling Journal of the Royal Statistical Society: Series B (Methodological) 56(2) 363375CrossRefGoogle Scholar
Drton, M., Plummer, M., (2017). A Bayesian information criterion for singular models Journal of the Royal Statistical Society: Series B (Methodological) 79(2) 323380CrossRefGoogle Scholar
Ferguson, T., (1973). A Bayesian analysis of some nonparametric problems Annals of Statistics 1(2) 209230CrossRefGoogle Scholar
Fritsch, A., Ickstadt, K., (2009). Improved criteria for clustering based on the posterior similarity matrix Bayesian Analysis 4 367392CrossRefGoogle Scholar
Fraley, C., Raftery, A. E., (2002). Model-based clustering, discriminant analysis, and density estimation Journal of the American Statistical Association 458 611631CrossRefGoogle Scholar
Frühwirth-Schnatter, S., Finite Mixture and Markov Switching Models, Springer Series in Statistics (2006). New York: SpringerGoogle Scholar
Frühwirth-Schnatter, S., Malsiner-Walli, G., (2019). From here to infinity: Sparse finite versus Dirichlet process mixtures in model-based clustering Advances in Data Analysis and Classification 13 3364CrossRefGoogle ScholarPubMed
Hwang, H., DeSarbo, S. W., Takane, Y., (2007). Fuzzy clusterwise generalized structured component analysis Psychometrika 72 181198CrossRefGoogle Scholar
Hwang, H., Suk, H. W., Lee, J-H., Moskowitz, D. S., Lim, J., (2012). Functional extended redundancy analysis Psychometrika 77(3) 524542CrossRefGoogle ScholarPubMed
Hwang, H., Suk, H. W., Takane, Y., Lee, J-H., Lim, J., (2015). Generalized functional extended redundancy analysis Psychometrika 80 101125CrossRefGoogle ScholarPubMed
Hotelling, H., (1957). The relations of the newer multivariate statistical methods to factor analysis British Journal of Mathematical and Statistical Psychology 10(2) 6979CrossRefGoogle Scholar
Ishwaran, H., Zarepour, M., (2000). Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models Biometrika 87 371390CrossRefGoogle Scholar
Jolliffe, I. T., (1982). A note on the use of principal components in regression Applied StatisticsCrossRefGoogle Scholar
Kamakura, W. A., Kim, B. D., Lee, J., (1996). Modeling preference and structural heterogeneity in consumer choice Marketing Science 15(2) 152172CrossRefGoogle Scholar
Kamakura, W. A., Russell, G., (1989). A probabilistic choice model for market segmentation and elasticity structure Journal of Marketing Research 26 379390CrossRefGoogle Scholar
Kok, B. C., Choi, J. S., Oh, H., Choi, J. Y., (2019). Sparse extended redundancy analysis: Variable selection via the exclusive lasso Multivariate Behavioral ResearchGoogle ScholarPubMed
Liu, J., Wong, W., Kong, A., (1994). Covariance structure of the Gibbs sampler with application to the comparisons of estimators and sampling schemes Biometrika 81(1) 2740CrossRefGoogle Scholar
Lovaglio, P. G., Vittadini, G., (2014). Structural equation models in a redundancy analysis framework with covariates Multivariate Behavioral Research 49(5) 486501CrossRefGoogle Scholar
Malsiner-Walli, G., Frühwirth-Schnatter, S., Grün, B., (2016). Model-based clustering based on sparse finite Gaussian mixtures Statistics and Computing 26 303324CrossRefGoogle ScholarPubMed
McCullagh, P., Nelder, J. A., Generalized linear models London: Chapman and HallGoogle Scholar
McLachlan, G. J., Peel, D., Finite mixture models (2000). New York: WileyCrossRefGoogle Scholar
Mengersen, K. L., Robert, C. P., Titterington, D. M., Mixtures: Estimation and applications (2011). New York: WileyCrossRefGoogle Scholar
Park, J-H., Choi, J. Y., Lee, J., Kyung, M., (1983). Bayesian approach to multivariate component-based logistic regression: analyzing correlated multivariate ordinal data Multivariate Behavioral Research (2021).Google Scholar
Pouwels, J. L., Cillessen, A. H. N., (2013). Correlates and outcomes associated with aggression and victimization among elementary-school children in a low-income urban context Journal of Youth and Adolescence 42 190205CrossRefGoogle Scholar
Raftery, A. E., (1995). Bayesian model selection in social research Sociological Methodology 25 111163CrossRefGoogle Scholar
Ramsay, J., Hooker, G., Graves, S., Functional data analysis with R and Matlab Berlin: SpringerCrossRefGoogle Scholar
Richardson, S., Green, P. J., (2009). On Bayesian analysis of mixtures with an unknown number of components (with discussion) Journal of the Royal Statistical Society: Series B (Statistical Methodology) (1997). 59 731792CrossRefGoogle Scholar
Rousseau, J., Mengersen, K., (2011). Asymptotic behaviour of the posterior distribution in overfitted mixture models Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73(5) 689710CrossRefGoogle Scholar
Schwarz, G., (1978). Estimating the dimension of a model Annals of Statistics 6(2) 461464CrossRefGoogle Scholar
Scrucca, L., Fop, M., Murphy, T. B., Raftery, A. E., (2016). mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models The R Journal 8(1) 289317CrossRefGoogle ScholarPubMed
Steele, R. J., Raftery, A. E., (2010). Performance of Bayesian model selection criteria for Gaussian mixture models Frontiers of Statistical Decision Making and Bayesian Analysis 2 113130Google Scholar
Stephens, M., (2000). Bayesian analysis of mixture models with an unknown number of components—An alternative to reversible jump methods The Annals of Statistics 28 4074CrossRefGoogle Scholar
Swait, J., Sweeney, J. C., (2000). Perceived value and its impact on choice behavior in a retail setting Journal of Retailing and Consumer Services 7(2) 7788CrossRefGoogle Scholar
Takane, Y., Hwang, H., (2005). An extended redundancy analysis and its applications to two practical examples Computational Statistics & Data Analysis 49(3) 785808CrossRefGoogle Scholar
Tanner, M. D., Wong, W., (1987). The calculation of posterior distribution by data augmentation (with discussion) Journal of the American Statistical Association 82 528550CrossRefGoogle Scholar
van den Wollenberg, A. L., (1977). Redundancy analysis an alternative for canonical correlation analysis Psychometrika 42(2) 207219CrossRefGoogle Scholar
Vehtari, A., Gelman, A. & Gabry, J., (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27, 14131432. https://doi.org/10.1007/s11222-016-9696-4CrossRefGoogle Scholar
Viele, K., Tong, B., (2002). Modeling with mixtures of linear regressions Statistics and Computing 12 315330CrossRefGoogle Scholar
Wang, J. M., Duong, M., Schwartz, D., Chang, L., Luo, T., (2014). Interpersonal and personal antecedents and consequences of peer victimization across middle childhood in Hong Kong Journal of Youth and Adolescence 43 19341945CrossRefGoogle ScholarPubMed
Watanabe, S., (2013). A widely applicable Bayesian information criterion Journal of Machine Learning Research 14 867897Google Scholar
Watanabe, S., (2021). WAIC and WBIC for mixture models Behaviormetrika 48 521CrossRefGoogle Scholar
Wedel, M., Market segmentation: Conceptual and methodological foundations Berlin: SpringerGoogle Scholar
Wold, H., Krishnaiah, P. R., (2000). Estimation of principal components and related methods by iterative least squares Multivariate analysis (1966). New York: Academic Press 391420Google Scholar
Wold, H., (1973). Nonlinear iterative partial least squares (NIPALS) modeling: some current developments. In: Krishnaiah, P.R., (Ed.), Multivariate Analysis (pp. 383487). New York: Academic Press. https://doi.org/10.1016/B978-0-12-426653-7.50032-6.CrossRefGoogle Scholar
Supplementary material: File

Gische and Voelkle supplementary material

Gische and Voelkle supplementary material
Download Gische and Voelkle supplementary material(File)
File 990.2 KB