Hostname: page-component-5f745c7db-hj587 Total loading time: 0 Render date: 2025-01-06T07:08:43.914Z Has data issue: true hasContentIssue false

Blind Subgrouping of Task-based FMRI

Published online by Cambridge University Press:  01 January 2025

Zachary F. Fisher*
Affiliation:
The Pennsylvania State University
Jonathan Parsons
Affiliation:
Duke University
Kathleen M. Gates
Affiliation:
The University of North Carolina at Chapel Hill
Joseph B. Hopfinger
Affiliation:
The University of North Carolina at Chapel Hill
*
Correspondence should be made to Zachary F. Fisher, Quantitative Developmental Systems Methodology Core, Department of Human Development and Family Studies, The Pennsylvania State University, Health and Human Development Building, University Park, PA16802, USA. Email: fisherz@psu.edu

Abstract

Significant heterogeneity in network structures reflecting individuals’ dynamic processes can exist within subgroups of people (e.g., diagnostic category, gender). This makes it difficult to make inferences regarding these predefined subgroups. For this reason, researchers sometimes wish to identify subsets of individuals who have similarities in their dynamic processes regardless of any predefined category. This requires unsupervised classification of individuals based on similarities in their dynamic processes, or equivalently, in this case, similarities in their network structures of edges. The present paper tests a recently developed algorithm, S-GIMME, that takes into account heterogeneity across individuals with the aim of providing subgroup membership and precise information about the specific network structures that differentiate subgroups. The algorithm has previously provided robust and accurate classification when evaluated with large-scale simulation studies but has not yet been validated on empirical data. Here, we investigate S-GIMME’s ability to differentiate, in a purely data-driven manner, between brain states explicitly induced through different tasks in a new fMRI dataset. The results provide new evidence that the algorithm was able to resolve, in an unsupervised data-driven manner, the differences between different active brain states in empirical fMRI data to segregate individuals and arrive at subgroup-specific network structures of edges. The ability to arrive at subgroups that correspond to empirically designed fMRI task conditions, with no biasing or priors, suggests this data-driven approach can be a powerful addition to existing methods for unsupervised classification of individuals based on their dynamic processes.

Type
Theory & Methods
Copyright
Copyright © 2023 The Author(s) under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We acknowledge the primary funding source for this project: National Institute of Health-National Institute of Biomedical Imaging and Bioengineering (R01-EB02290).

References

Aghabozorgi, S.,Shirkhorshidi, A. S., &Wah, T. Y.(2015).Time-series clustering: A decade review.Information Systems,53,1638.CrossRefGoogle Scholar
Arizmendi, C.,Gates, K.,Fredrickson, B., &Wright, A.(2021).Specifying exogeneity and bilinear effects in data-driven model searches.Behavior Research Methods,53(3),12761288.CrossRefGoogle ScholarPubMed
Bellman, R.(1966).Dynamic programming.Science,153(3731),3437.CrossRefGoogle ScholarPubMed
Beltz, A. M., &Gates, K. M.(2017).Network mapping with gimme.Multivariate Behavioral Research,52(6),789804.CrossRefGoogle ScholarPubMed
Beltz, A. M.,Gates, K. M.,Engels, A. S.,Molenaar, P. C.,Pulido, C.,Turrisi, R.,Berenbaum, S. A.,Gilmore, R. O., &Wilson, S. J.(2013).Changes in alcohol-related brain networks across the first year of college: A prospective pilot study using fMRI effective connectivity mapping.Addictive Behaviors,38(4),20522059.CrossRefGoogle ScholarPubMed
Beltz, A. M., &Molenaar, P. C.(2016).Dealing with multiple solutions in structural vector autoregressive models.Multivariate Behavioral Research,51(2–3),357373.CrossRefGoogle ScholarPubMed
Brett, M., Anton, J.-L., Valabregue, R., Poline, J.-B., et al. (2002). Region of interest analysis using an spm toolbox. In 8th international conference on functional mapping of the human brain, vol. 16, page 497. Sendai.Google Scholar
Bringmann, L. F.,Pe, M. L.,Vissers, N.,Ceulemans, E.,Borsboom, D.,Vanpaemel, W.,Tuerlinckx, F., &Kuppens, P.(2016).Assessing temporal emotion dynamics using networks.Assessment,23(4),425435.CrossRefGoogle ScholarPubMed
Brodersen, K. H., Deserno, L., Schlagenhauf, F., Lin, Z., Penny, W. D., Buhmann, J. M., & Stephan, K. E. (2014). Dissecting psychiatric spectrum disorders by generative embedding. NeuroImage: Clinical, 4, 98–111.CrossRefGoogle Scholar
Brown, T. A. (2006). Confirmatory factor analysis for applied research.Google Scholar
Bullmore, E., &Sporns, O.(2009).Complex brain networks: Graph theoretical analysis of structural and functional systems.Nature Reviews Neuroscience,10(3),186198.CrossRefGoogle ScholarPubMed
Caliński, T., &Harabasz, J.(1974).A dendrite method for cluster analysis.Communications in Statistics-theory and Methods,3(1),127.CrossRefGoogle Scholar
Dajani, D. R.,Burrows, C. A.,Nebel, M. B.,Mostofsky, S. H.,Gates, K. M., &Uddin, L. Q.(2019).Parsing heterogeneity in autism spectrum disorder and attention-deficit/hyperactivity disorder with individual connectome mapping.Brain Connectivity,9(9),673691.CrossRefGoogle ScholarPubMed
Dickie, E. W.,Ameis, S. H.,Shahab, S.,Calarco, N.,Smith, D. E.,Miranda, D.,Viviano, J. D., &Voineskos, A. N.(2018).Personalized intrinsic network topography mapping and functional connectivity deficits in autism spectrum disorder.Biological Psychiatry,84(4),278286.CrossRefGoogle ScholarPubMed
Dubois, J.,Galdi, P.,Paul, L. K., &Adolphs, R.(2018).A distributed brain network predicts general intelligence from resting-state human neuroimaging data.Philosophical Transactions of the Royal Society B: Biological Sciences,373(1756),20170284CrossRefGoogle ScholarPubMed
Duda, R. O.,Hart, P. E.etalPattern classification and scene analysis,(1973 New York:Wiley.Google Scholar
Duffy, K. A.,Fisher, Z. F.,Arizmendi, C. A.,Molenaar, P. C.,Hopfinger, J.,Cohen, J. R.,Beltz, A. M.,Lindquist, M. A.,Hallquist, M. N., &Gates, K. M.(2021).Detecting task-dependent functional connectivity in group iterative multiple model estimation with person-specific hemodynamic response functions.Brain Connectivity,11(6),418429.CrossRefGoogle ScholarPubMed
Easson, A. K.,Fatima, Z., &McIntosh, A. R.(2019).Functional connectivity-based subtypes of individuals with and without autism spectrum disorder.Network Neuroscience,3(2),344362.CrossRefGoogle ScholarPubMed
Enders, C. K.(2001).The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data.Psychological Methods,6(4),352CrossRefGoogle ScholarPubMed
Epskamp, S.,van Borkulo, C. D.,van der Veen, D. C.,Servaas, M. N.,Isvoranu, A-M,Riese, H., &Cramer, A. O.(2018).Personalized network modeling in psychopathology: The importance of contemporaneous and temporal connections.Clinical Psychological Science,6(3),416427.CrossRefGoogle ScholarPubMed
Ernst, A. F.,Timmerman, M. E.,Jeronimus, B. F., &Albers, C. J.(2021).Insight into individual differences in emotion dynamics with clustering.Assessment,28(4),11861206.CrossRefGoogle ScholarPubMed
Finn, E. S. & Constable, R. T. (2022). Individual variation in functional brain connectivity: Implications for personalized approaches to psychiatric disease. Dialogues in Clinical Neuroscience.Google Scholar
Fisher, A. J., &Boswell, J. F.(2016).Enhancing the personalization of psychotherapy with dynamic assessment and modeling.Assessment,23(4),496506.CrossRefGoogle ScholarPubMed
Friston, K. J.,Holmes, A. P.,Worsley, K. J.,Poline, J-P,Frith, C. D., &Frackowiak, R. S.(1994).Statistical parametric maps in functional imaging: A general linear approach.Human Brain Mapping,2(4),189210.CrossRefGoogle Scholar
Gates, K. M.,Fisher, Z. F., &Bollen, K. A.(2020).Latent variable gimme using model implied instrumental variables (MIIVs).Psychological Methods,25(2),227CrossRefGoogle ScholarPubMed
Gates, K. M.,Henry, T.,Steinley, D., &Fair, D. A.(2016).A monte carlo evaluation of weighted community detection algorithms.Frontiers in Neuroinformatics,10,45CrossRefGoogle Scholar
Gates, K. M.,Lane, S. T.,Varangis, E.,Giovanello, K., &Guiskewicz, K.(2017).Unsupervised classification during time-series model building.Multivariate Behavioral Research,52(2),129148.CrossRefGoogle ScholarPubMed
Gates, K. M., &Molenaar, P. C.(2012).Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples.NeuroImage,63(1),310319.CrossRefGoogle ScholarPubMed
Gates, K. M.,Molenaar, P. C.,Iyer, S. P.,Nigg, J. T., &Fair, D. A.(2014).Organizing heterogeneous samples using community detection of gimme-derived resting state functional networks.PLoS ONE,9(3CrossRefGoogle ScholarPubMed
Golino, H. F., &Epskamp, S.(2017).Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research.PLoS ONE,12(6CrossRefGoogle ScholarPubMed
Gumus, M., Mack, M. L., Green, R., Khodadadi, M., Wennberg, R. A., Crawley, A., Colella, B., Tarazi, A., Mikulis, D., & Tator, C. H., et al. (2022). Brain connectivity changes in postconcussion syndrome as the neural substrate of a heterogeneous syndrome. Brain Connectivity.CrossRefGoogle Scholar
Heller, R.,Stanley, D.,Yekutieli, D.,Rubin, N., &Benjamini, Y.(2006).Cluster-based analysis of FMRI data.NeuroImage,33(2),599608.CrossRefGoogle ScholarPubMed
Hennig, C. (2020). fpc: Flexible Procedures for clustering. R package version 2.2-9.Google Scholar
Henry, T. R.,Feczko, E.,Cordova, M.,Earl, E.,Williams, S.,Nigg, J. T.,Fair, D. A., &Gates, K. M.(2019).Comparing directed functional connectivity between groups with confirmatory subgrouping gimme.NeuroImage,188,642653.CrossRefGoogle ScholarPubMed
Henry, T. R.,Feczko, E.,Cordova, M.,Earl, E.,Williams, S.,Nigg, J. T.,Fair, D. A., &Gates, K. M.(2019).Comparing directed functional connectivity between groups with confirmatory subgrouping gimme.NeuroImage,188,642653.CrossRefGoogle ScholarPubMed
Hurlburt, R. T.,Alderson-Day, B.,Fernyhough, C., &Kühn, S.(2015).What goes on in the resting-state? A qualitative glimpse into resting-state experience in the scanner.Frontiers in Psychology,6,1535CrossRefGoogle ScholarPubMed
Kanwisher, N.,McDermott, J., &Chun, M. M.(1997).The fusiform face area: A module in human extrastriate cortex specialized for face perception.Journal of Neuroscience,17(11),43024311.CrossRefGoogle Scholar
Lane, S., Gates, K., Fisher, Z., and Molenaar, P. (2021). Package ‘gimme’.Google Scholar
Lane, S. T., &Gates, K. M.(2017).Automated selection of robust individual-level structural equation models for time series data.Structural Equation Modeling: A Multidisciplinary Journal,24(5),768782.CrossRefGoogle Scholar
Lane, S. T.,Gates, K. M.,Pike, H. K.,Beltz, A. M., &Wright, A. G.(2019).Uncovering general, shared, and unique temporal patterns in ambulatory assessment data.Psychological Methods,24(1),54CrossRefGoogle ScholarPubMed
Laumann, T. O.,Gordon, E. M.,Adeyemo, B.,Snyder, A. Z.,Joo, S. J.,Chen, M-Y,Gilmore, A. W.,McDermott, K. B., &Nelson, S. M.,Dosenbach, N. U.etal(2015).Functional system and areal organization of a highly sampled individual human brain.Neuron,87(3),657670.CrossRefGoogle ScholarPubMed
Liao, T. W.(2005).Clustering of time series data: A survey.Pattern Recognition,38(11),18571874.CrossRefGoogle Scholar
Luo, L., Fisher, Z. F., Arizmendi, C., Molenaar, P., Beltz, A., & Gates, K. M. (2022). Estimating both directed and undirected contemporaneous relations in time series data using hybrid-group iterative multiple model estimation. Psychological Methods.Google Scholar
Lütkepohl, H.New introduction to multiple time series analysis,(2005 New York:SpringerCrossRefGoogle Scholar
MacQueen, J. (1967). Classification and analysis of multivariate observations. In 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297.Google Scholar
Mathôt, S.,Schreij, D., &Theeuwes, J.(2012).Opensesame: An open-source, graphical experiment builder for the social sciences.Behavior Research Methods,44(2),314324.CrossRefGoogle ScholarPubMed
McLachlan, G., &Chang, S.(2004).Mixture modelling for cluster analysis.Statistical Methods in Medical Research,13(5),347361.CrossRefGoogle ScholarPubMed
Miller, M. B., &Van Horn, J. D.(2007).Individual variability in brain activations associated with episodic retrieval: A role for large-scale databases.International Journal of Psychophysiology,63(2),205213.CrossRefGoogle ScholarPubMed
Miranda, L., Paul, R., Pütz, B., Koutsouleris, N., & Müller-Myhsok, B. (2021). Systematic review of functional MRI applications for psychiatric disease subtyping. Frontiers in Psychiatry, 12.CrossRefGoogle Scholar
Molenaar, P. C.(2017).Equivalent dynamic models.Multivariate Behavioral Research,52(2),242258.CrossRefGoogle ScholarPubMed
Newman, M. E.(2004).Fast algorithm for detecting community structure in networks.Physical Review E,69(6Google ScholarPubMed
Nichols, T. T.,Gates, K. M.,Molenaar, P. C., &Wilson, S. J.(2014).Greater bold activity but more efficient connectivity is associated with better cognitive performance within a sample of nicotine-deprived smokers.Addiction Biology,19(5),931940.CrossRefGoogle ScholarPubMed
Olszowy, W.,Aston, J.,Rua, C., &Williams, G. B.(2019).Accurate autocorrelation modeling substantially improves fMRI reliability.Nature Communications,10(1),111.Google ScholarPubMed
Pons, P. & Latapy, M. (2005). Computing communities in large networks using random walks. In International symposium on computer and information sciences, pp. 284–293. Springer.CrossRefGoogle Scholar
Power, J. D.,Cohen, A. L.,Nelson, S. M.,Wig, G. S.,Barnes, K. A.,Church, J. A.,Vogel, A. C.,Laumann, T. O.,Miezin, F. M., &Schlaggar, B. L.etal(2011).Functional network organization of the human brain.Neuron,72(4),665678.CrossRefGoogle ScholarPubMed
Price, R. B.,Gates, K.,Kraynak, T. E.,Thase, M. E., &Siegle, G. J.(2017).Data-driven subgroups in depression derived from directed functional connectivity paths at rest.Neuropsychopharmacology,42(13),26232632.CrossRefGoogle ScholarPubMed
Price, R. B.,Lane, S.,Gates, K.,Kraynak, T. E.,Horner, M. S.,Thase, M. E., &Siegle, G. J.(2017).Parsing heterogeneity in the brain connectivity of depressed and healthy adults during positive mood.Biological Psychiatry,81(4),347357.CrossRefGoogle ScholarPubMed
Rosenberg, M. D.,Finn, E. S.,Scheinost, D.,Papademetris, X.,Shen, X.,Constable, R. T., &Chun, M. M.(2016).A neuromarker of sustained attention from whole-brain functional connectivity.Nature Neuroscience,19(1),165171.CrossRefGoogle ScholarPubMed
Rubinov, M., &Sporns, O.(2010).Complex network measures of brain connectivity: Uses and interpretations.NeuroImage,52(3),10591069.CrossRefGoogle ScholarPubMed
Saris, W. E., Satorra, A., & Sörbom, D. (1987). The detection and correction of specification errors in structural equation models. Sociological Methodology, pp. 105–129.CrossRefGoogle Scholar
Scherf, K. S.,Behrmann, M.,Humphreys, K., &Luna, B.(2007).Visual category-selectivity for faces, places and objects emerges along different developmental trajectories.Developmental Science,10(4),F15F30.CrossRefGoogle ScholarPubMed
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, pp. 461–464.CrossRefGoogle Scholar
Shirer, W. R.,Ryali, S.,Rykhlevskaia, E.,Menon, V., &Greicius, M. D.(2012).Decoding subject-driven cognitive states with whole-brain connectivity patterns.Cerebral Cortex,22(1),158165.CrossRefGoogle ScholarPubMed
Sörbom, D.(1989).Model modification.Psychometrika,54(3),371384.CrossRefGoogle Scholar
Sporns, O. (2016). Networks of the brain. MIT Press.Google Scholar
Tokuda, T.,Yoshimoto, J.,Shimizu, Y.,Okada, G.,Takamura, M.,Okamoto, Y.,Yamawaki, S., &Doya, K.(2018).Identification of depression subtypes and relevant brain regions using a data-driven approach.Scientific Reports,8(1),113.CrossRefGoogle ScholarPubMed
Tottenham, N.,Tanaka, J. W.,Leon, A. C.,McCarry, T.,Nurse, M.,Hare, T. A.,Marcus, D. J.,Westerlund, A.,Casey, B. J., &Nelson, C.(2009).The nimstim set of facial expressions: Judgments from untrained research participants.Psychiatry Research,168(3),242249.CrossRefGoogle ScholarPubMed
Volkmar, F. R.,Lord, C.,Bailey, A.,Schultz, R. T., &Klin, A.(2004).Autism and pervasive developmental disorders.Journal of Child Psychology and Psychiatry,45(1),135170.CrossRefGoogle ScholarPubMed
Wang, Y.,Tang, S.,Zhang, L.,Bu, X.,Lu, L.,Li, H.,Gao, Y.,Hu, X.,Kuang, W.,Jia, Z.etal(2021).Data-driven clustering differentiates subtypes of major depressive disorder with distinct brain connectivity and symptom features.The British Journal of Psychiatry,219(5),606613.CrossRefGoogle ScholarPubMed
Ward, J. H. Jr, &Hook, M. E.(1963).Application of an hierarchical grouping procedure to a problem of grouping profiles.Educational and Psychological Measurement,23(1),6981.CrossRefGoogle Scholar
Weigard, A., Lane, S., Gates, K., & Beltz, A. (2021). The influence of autoregressive relation strength and search strategy on directionality recovery in group iterative multiple model estimation. Psychological Methods.Google Scholar
Wright, A. G.,Gates, K. M.,Arizmendi, C.,Lane, S. T.,Woods, W. C., &Edershile, E. A.(2019).Focusing personality assessment on the person: Modeling general, shared, and person specific processes in personality and psychopathology.Psychological Assessment,31(4),502CrossRefGoogle ScholarPubMed
Xu, P.,Huang, R.,Wang, J.,Van Dam, N. T.,Xie, T.,Dong, Z.,Chen, C.,Gu, R.,Zang, Y-F,He, Y.etal(2014).Different topological organization of human brain functional networks with eyes open versus eyes closed.NeuroImage,90,246255.CrossRefGoogle ScholarPubMed
Yang, Z.,Xu, Y.,Xu, T.,Hoy, C. W.,Handwerker, D. A.,Chen, G.,Northoff, G.,Zuo, X-N, &Bandettini, P. A.(2014).Brain network informed subject community detection in early-onset schizophrenia.Scientific Reports,4(1),112.Google ScholarPubMed
Yang, Z.,Xu, Y.,Xu, T.,Hoy, C. W.,Handwerker, D. A.,Chen, G.,Northoff, G.,Zuo, X-N, &Bandettini, P. A.(2014).Brain network informed subject community detection in early-onset schizophrenia.Scientific Reports,4(1),112.Google ScholarPubMed