Hostname: page-component-5f745c7db-8qdnt Total loading time: 0 Render date: 2025-01-06T07:21:16.177Z Has data issue: true hasContentIssue false

Canonical Analysis of two Convex Polyhedral Cones and Applications

Published online by Cambridge University Press:  01 January 2025

Michel Tenenhaus*
Affiliation:
Centre HEC-ISA
*
Requests for reprints should be sent to Michel Tenenhaus, Département S.LA.D., Centre HEC-ISA, 78350 Jouy-en-Josas, FRANCE.

Abstract

Canonical analysis of two convex polyhedral cones consists in looking for two vectors (one in each cone) whose square cosine is a maximum. This paper presents new results about the properties of the optimal solution to this problem, and also discusses in detail the convergence of an alternating least squares algorithm. The set of scalings of an ordinal variable is a convex polyhedral cone, which thus plays an important role in optimal scaling methods for the analysis of ordinal data. Monotone analysis of variance, and correspondence analysis subject to an ordinal constraint on one of the factors are both canonical analyses of a convex polyhedral cone and a subspace. Optimal multiple regression of a dependent ordinal variable on a set of independent ordinal variables is a canonical analysis of two convex polyhedral cones as long as the signs of the regression coefficients are given. We discuss these three situations and illustrate them by examples.

Type
Original Paper
Copyright
Copyright © 1988 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper is dedicated to the memory of Patrice Bertier who suggested its subject to me in 1974. This paper also owes much to the very valuable suggestions of J. P. Benzécri, P. Cazes and J. de Leeuw, and I am very grateful to them. I also want to thank J. Yellin for his help in improving the English of the manuscript.

References

Agha, A. (1986). Analyse canonique de deux cones polyédriques convexes [Canonical analysis of two convex polyhedral cones], Mémoire de D.E.A. Paris: Université Paris IX-Dauphine, LAMSADE.Google Scholar
Armstrong, R. D., & Frome, E. L. (1976). A branch-and-bound solution of a restricted least squares problem. Technometrics, 18, 447450.CrossRefGoogle Scholar
Ayer, M., Brunk, H. D., Ewing, G. M., & Reid, W. T., Silverman, E. (1955). An empirical distribution function for sampling with incomplete information. Annals of Mathematical Statistics, 26, 641647.CrossRefGoogle Scholar
Barlow, R. E., Bartholomew, D. J., Bremner, J. M., & Brunk, H. D. (1972). Statistical inference under order restriction, New York: Wiley.Google Scholar
Benzécri, J. P. (1979). Un algorithme pour construire une perpendiculaire commune à deux convexes. [An algorithm to construct a common perpendicular to two convex surfaces]. Les cahiers de l'analyse des données, 4, 159173.Google Scholar
Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, Series B, 26, 211252.CrossRefGoogle Scholar
Bradley, R. A., Katti, S. K., & Coons, I. J. (1962). Optimal scaling for ordered categories. Psychometrika, 27, 355374.CrossRefGoogle Scholar
Bremner, J. M. (1982). An algorithm for nonnegative least squares and projection into cones. In Caussinus, H., Ettinger, P., & Tomassone, R. (Eds.), compstat 1982 (pp. 155160). Wien: Physica-Verlag.Google Scholar
de Leeuw, J. (1977). A normalized cone regression approach to alternating least squares algorithms, Leiden: University of Leiden, Department of Data Theory.Google Scholar
de Leeuw, J. (1984). The GIFI system on nonlinear multivariate analysis. In Diday, E., Jambu, M., Lebart, L., Pagès, J.-P., & Tomassone, R. (Eds.), Data Analysis and Informatics, 3 (pp. 415424). Amsterdam: North-Holland.Google Scholar
de Leeuw, J., Young, F. W., & Takane, Y. (1976). Additive structure in qualitative data: An alternating least squares method with optimal scaling features. Psychometrika, 41, 471503.CrossRefGoogle Scholar
Deutsch, F., McCabe, J. H., & Phillips, G. M. (1975). Some algorithms for computing best approximations from convex cones. SIAM Journal, Numerical Analysis, 12, 390403.CrossRefGoogle Scholar
Fisher, R. A. (1946). Statistical methods for research workers 10th ed.,, Edinburgh: Oliver and Boyd.Google Scholar
Gifi, A. (1981). Nonlinear multivariate analysis, Leiden: University of Leiden, Department of Data Theory.Google Scholar
Jacquet-Lagreze, E., & Siskos, J. (1982). Assessing a set of additive utility functions for multicriteria decision-making, the UTA method. European Journal of Operational Research, 10, 151164.CrossRefGoogle Scholar
Jennrich, R. I. (1977). Stepwise regression. In Enslein, K. & Ralston, A., Wilf, H. S. (Eds.), Statistical methods for digital computers (pp. 5875). New York: John Wiley & Sons.Google Scholar
Judge, G. G., & Takayama, T. (1966). Inequality restrictions in regression analysis. Journal of American Statistical Association, 61, 166181.CrossRefGoogle Scholar
Kruskal, J. B. (1964). Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29, 2842.CrossRefGoogle Scholar
Kruskal, J. B. (1965). Analysis of factorial experiments by estimating monotone transformations of the data. Journal of the Royal Statistical Society, Series B, 27, 251263.CrossRefGoogle Scholar
Kruskal, J. B., & Carmone, F. J. (1968). Monanova, a Fortran IV program for monotone analysis of variance. Unpublished manuscript. Bell Telephone Laboratories, Murray-Hill, New Jersey.Google Scholar
Kruskal, J. B., & Carroll, J. D. (1969). Geometrical models and Badness-of-fit functions. In Krishnaiah, P. R. (Eds.), Multivariate analysis II (pp. 639671). New York: Academic Press.Google Scholar
Lawson, C. M., & Hanson, R. J. (1974). Solving least squares problems, Englewood Cliffs: Prentice-Hall.Google Scholar
Luenberger, D. G. (1969). Optimization by vector space methods, New York: J. Wiley.Google Scholar
Nishisato, S. (1980). Analysis of categorical data: Dual scaling and its applications, Toronto: University of Toronto Press.CrossRefGoogle Scholar
Ostrowski, A. M. (1966). Solutions of equations and systems of equations, New York: Academic Press.Google Scholar
Pietri, M. (1972). Analyse des correspondances sous contraintes [Correspondence analysis subject to constraints], Fontenay-sous-Bois: CEA, LSEES.Google Scholar
Stoer, J., & Witzgall, C. (1970). Convexity and optimization in finite dimensions 1, Berlin: Springer-Verlag.CrossRefGoogle Scholar
Tenenhaus, M. (1984). L'analyse canonique généralisée de variables numériques, nominales ou ordinales par des méthodes de codage optimal. [Generalized canonical analysis of numerical, nominal or ordinal variables by optimal scaling methods]. In Diday, E., Jambu, M., Lebart, L., Pagés, J-P., & Tomassone, R. (Eds.), Data analysis and informatics, 3 (pp. 7184). Amsterdam: North-Holland.Google Scholar
Van Eeden, C. (1956). Maximum likelihood estimation of ordered probabilities. Indagationes Mathematicae, 18(3), 444455.CrossRefGoogle Scholar
van der Burg, E. (1983). Canals users guide, Leiden: University of Leiden, Department of Data Theory.Google Scholar
van der Burg, E., & de Leeuw, J. (1983). Nonlinear canonical correlation. British Journal of Mathematical and Statistical Psychology, 36, 5480.CrossRefGoogle Scholar
van der Burg, E., de Leeuw, J., & Verdegall, R. (1984). Nonlinear canonical correlation with m sets of variables, Leiden: University of Leiden, Department of Data Theory.Google Scholar
Verdegall, R. (1986). Overals, Leiden: University of Leiden, Departent of Data Theory.Google Scholar
Waterman, M. S. (1974). A restricted least squares problem. Technometrics, 16, 135136.CrossRefGoogle Scholar
Young, F. W. (1981). Quantitative analysis of qualitative data. Psychometrika, 46, 357388.CrossRefGoogle Scholar
Young, F. W., de Leeuw, J., & Takane, Y. (1976). Regression with qualitative and quantitative variables: An alternating least squares method with optimal scaling features. Psychometrika, 41, 505529.CrossRefGoogle Scholar
Young, F. W., Takane, Y., & de Leeuw, J. (1978). The principal components of mixed measurement level multivariate data: An alternating least squares method with optimal scaling features. Psychometrika, 43, 279281.CrossRefGoogle Scholar