Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-08T16:47:07.323Z Has data issue: false hasContentIssue false

Clustering Qualitative Data Based on Binary Equivalence Relations: Neighborhood Search Heuristics for the Clique Partitioning Problem

Published online by Cambridge University Press:  01 January 2025

Michael J. Brusco*
Affiliation:
Florida State University
Hans-Friedrich Köhn
Affiliation:
University of Missouri-Columbia
*
Requests for reprints should be sent to Michael J. Brusco, Department of Marketing, College of Business, Florida State University, Tallahassee, FL 32306-1110, USA. E-mail: mbrusco@cob.fsu.edu

Abstract

The clique partitioning problem (CPP) requires the establishment of an equivalence relation for the vertices of a graph such that the sum of the edge costs associated with the relation is minimized. The CPP has important applications for the social sciences because it provides a framework for clustering objects measured on a collection of nominal or ordinal attributes. In such instances, the CPP incorporates edge costs obtained from an aggregation of binary equivalence relations among the attributes. We review existing theory and methods for the CPP and propose two versions of a new neighborhood search algorithm for efficient solution. The first version (NS-R) uses a relocation algorithm in the search for improved solutions, whereas the second (NS-TS) uses an embedded tabu search routine. The new algorithms are compared to simulated annealing (SA) and tabu search (TS) algorithms from the CPP literature. Although the heuristics yielded comparable results for some test problems, the neighborhood search algorithms generally yielded the best performances for large and difficult instances of the CPP.

Type
Theory and Methods
Copyright
Copyright © 2009 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arabie, P., Hubert, L., De Soete, G. (1996). An overview of combinatorial data analysis. In Arabie, P., Hubert, L.J., De Soete, G. (Eds.), Clustering and classification (pp. 564). River Edge: World Scientific.CrossRefGoogle Scholar
Barthélemy, J.-P., Monjardet, B. (1981). The median procedure in cluster analysis and social choice theory. Mathematical Social Sciences, 1, 235267.CrossRefGoogle Scholar
Barthélemy, J.-P., Monjardet, B. (1988). The median procedure in data analysis: new results and open problems. In Bock, H.H. (Eds.), Classification and related methods in data analysis (pp. 309316). Amsterdam: North-Holland.Google Scholar
Barthélemy, J.-P., Monjardet, B. (1995). The median procedure for partitions. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 19, 334.CrossRefGoogle Scholar
Blake, C.L., & Merz, C.J. (1998). UCI repository of machine learning databases. http://www.ics.uci.edu/mlearn/MLRepository.html.Google Scholar
Borda, J.C. (1784). Mèmoire sur les élections au scrutin. Histoire de l’académie royale des sciences pour 1781. Paris.Google Scholar
Brusco, M.J., Jacobs, L.W., Bongiorno, R.J., Lyons, D.V., Tang, B. (1995). Improving personnel scheduling at airline stations. Operations Research, 43, 741751.CrossRefGoogle Scholar
Brusco, M.J., Köhn, H.-F. (2008). Optimal partitioning of a data set based on the p-median model. Psychometrika, 73, 89105.CrossRefGoogle Scholar
Brusco, M.J., Köhn, H.-F. (2008). Comment on ‘Clustering by passing messages between data points’. Science, 319, 726.CrossRefGoogle ScholarPubMed
Brusco, M.J., Steinley, D. (2007). A comparison of heuristic procedures for minimum within-cluster sums of squares partitioning. Psychometrika, 72, 583600.CrossRefGoogle Scholar
Brusco, M.J., Steinley, D. (2007). A variable neighborhood search method for generalized blockmodeling of two-mode binary matrices. Journal of Mathematical Psychology, 51, 325338.CrossRefGoogle Scholar
Charon, I., Hudry, O. (2006). Noising methods for a clique partitioning problem. Discrete Applied Mathematics, 154, 754769.CrossRefGoogle Scholar
Condorcet, M.J.A.N. (1785). Caritat, marquis de Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Paris.Google Scholar
De Amorim, S.G., Barthélemy, J.-P., Ribeiro, C.C. (1992). Clustering and clique partitioning: Simulated annealing and tabu search approaches. Journal of Classification, 9, 1741.CrossRefGoogle Scholar
Dempster, A.P., Laird, N.M., Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society B, 39, 138.CrossRefGoogle Scholar
Dorndorf, U., Pesch, E. (1994). Fast clustering algorithms. ORSA Journal on Computing, 6, 141153.CrossRefGoogle Scholar
Forgy, E.W. (1965). Cluster analyses of multivariate data: Efficiency versus interpretability of classifications. Biometrics, 21, 768.Google Scholar
Garcia, C.G., Pérez-Brito, D., Campos, V., Marti, R. (2006). Variable neighborhood search for the linear ordering problem. Computers and Operations Research, 33, 35493565.CrossRefGoogle Scholar
Glover, F. (1989). Tabu search—Part I. ORSA Journal on Computing, 1, 190206.CrossRefGoogle Scholar
Glover, F. (1990). Tabu search—Part II. ORSA Journal on Computing, 2, 432.CrossRefGoogle Scholar
Gower, J.C., Legendre, P. (1986). Metric and Euclidean properties of dissimilarity coefficients. Journal of Classification, 5, 548.CrossRefGoogle Scholar
Grim, J. (2006). EM cluster analysis for categorical data. In Yeung, D.-Y., Kwok, J.T., Fred, A.L.N., Roll, F., de Ridder, D. (Eds.), Structural, syntactic, and statistical pattern recognition (pp. 640648). Berlin: Springer.CrossRefGoogle Scholar
Grötschel, M., Wakabayashi, Y. (1989). A cutting plane algorithm for a clustering problem. Mathematical Programming, 45, 5996.CrossRefGoogle Scholar
Grötschel, M., Wakabayashi, Y. (1990). Facets of the clique partitioning polytope. Mathematical Programming, 47, 367387.CrossRefGoogle Scholar
Hansen, P., Mladenović, N. (1997). Variable neighborhood search for the p-median. Location Science, 5, 207226.CrossRefGoogle Scholar
Hansen, P., Mladenović, N. (2001). J-Means: a new local search heuristic for minimum sum of squares clustering. Pattern Recognition, 34, 405413.CrossRefGoogle Scholar
Hartigan, J.A. (1975). Clustering algorithms, New York: Wiley.Google Scholar
Hartigan, J.A., Wong, M.A. (1979). Algorithm AS136: a K-means clustering program. Applied Statistics, 28(1), 100108.CrossRefGoogle Scholar
ILOG (1999). ILOG CPLEX 6.5 User’s manual. Mountain View, CA: Author.Google Scholar
Jacobs, L.W., Brusco, M.J. (1995). Note: A local-search heuristic for large set-covering problems. Naval Research Logistics, 42, 11291140.3.0.CO;2-M>CrossRefGoogle Scholar
Johnson, S.C. (1967). Hierarchical clustering schemes. Psychometrika, 32, 241254.CrossRefGoogle ScholarPubMed
Kaufman, L., Rousseeuw, P.J. (1990). Finding groups in data: an introduction to cluster analysis, New York: Wiley.CrossRefGoogle Scholar
Kemeny, J.G. (1959). Mathematics without numbers. Daedalus, 88, 577591.Google Scholar
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. (1983). Optimization by simulated annealing. Science, 220, 671680.CrossRefGoogle ScholarPubMed
Klastorin, T. (1985). The p-median problem for cluster analysis: a comparative test using the mixture model approach. Management Science, 31, 8495.CrossRefGoogle Scholar
Kochenberger, G., Glover, F., Alidaee, B., Wang, H. (2005). Clustering of microarray data via clique partitioning. Journal of Combinatorial Optimization, 10, 7792.CrossRefGoogle Scholar
MacQueen, J.B. (1967). Some methods for classification and analysis of multivariate observations. In Le Cam, L.M., Neyman, J. (Eds.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (pp. 281297). Berkeley: University of California Press.Google Scholar
Marcotorchino, J.-F. (1981). Agrégation des similarités en classification automatique. Thèse d’Etat, Université Paris VI.Google Scholar
Marcotorchino, F., Michaud, P. (1981). Heuristic approach to the similarity aggregation problem. Methods of Operations Research, 43, 395404.Google Scholar
McLachlan, G., Peel, D. (2000). Finite mixture models, New York: Wiley.CrossRefGoogle Scholar
Mehrotra, A., Trick, M. (1998). Cliques and clustering: a combinatorial approach. Operations Research Letters, 22, 112.CrossRefGoogle Scholar
Michaud, P., Marcotorchino, J.-F.et al. (1980). Optimisation en analyse des donneés relationnelles. In Diday, E.et al. (Eds.), Data analysis and informatics (pp. 655670). Berlin: Springer.Google Scholar
Mirkin, B.G. (1974). The problems of approximation in space of relations and qualitative data analysis. Information and Remote Control, 35, 14241431.Google Scholar
Mirkin, B.G. (1979). Group choice, New York: Wiley.Google Scholar
Mladenović, N., Hansen, P. (1997). Variable neighborhood search. Computers and Operations Research, 24, 10971100.CrossRefGoogle Scholar
Oosten, M., Rutten, J., Spieksma, F. (2001). The clique partitioning problem: facets and patching facets. Networks, 38, 209226.CrossRefGoogle Scholar
Opitz, O., Schader, M. (1984). Analyse qualitativer Daten: Einführung und Übersicht. Teil 1. OR Spektrum, 6, 6783. Analysis of qualitative data: Introduction and survey. Part 1CrossRefGoogle Scholar
Opitz, O., Schader, M. (1984). Analyse qualitativer Daten: Einführung und Übersicht. Teil 2. OR Spektrum, 6, 133140. Analysis of qualitative data: Introduction and survey. Part 2CrossRefGoogle Scholar
Pacheco, J., Valencia, O. (2003). Design of hybrids for the minimum sum-of-squares clustering problem. Computational Statistics and Data Analysis, 43, 235248.CrossRefGoogle Scholar
Palubeckis, G. (1997). A branch-and-bound approach using polyhedral results for a clustering problem. INFORMS Journal on Computing, 9, 3042.CrossRefGoogle Scholar
Règnier, S. (1965). Sur quelques aspects mathématiques des problèmes de classification automatique. I.C.C. Bulletin, 4, 175191.Google Scholar
Schader, M., Tüshaus, U. (1985). Ein Subgradientenverfahren zur Klassifikation qualitativer Daten. OR Spektrum, 7, 115. A subgradient procedure for classifying qualitative dataCrossRefGoogle Scholar
Tüshaus, U. (1983). Aggregation binärer Relationen in der qualitativen Datenanalyse, Königsstein: Athenäum. Aggregation of binary relations in qualitative data analysisGoogle Scholar
Vescia, G. (1985). Descriptive classification of cetacea: whales, porpoises and dolphins. In Marcotorchino, J.-F., Proth, J.M., Janssen, J. (Eds.), Data analysis in real life environment: ins and outs of solving problems (pp. 724). Amsterdam: Elsevier.Google Scholar
Wakabayashi, Y. (1986). Aggregation of binary relations: algorithmic and polyhedral investigations. PhD Thesis, Universität Augsburg, Germany.Google Scholar
Wakabayashi, Y. (1998). The complexity of computing medians of relations. IME-USP, 3, 323349.Google Scholar
Wang, H., Obremski, T., Alidaee, B., Kochenberger, G. (2008). Clique partitioning for clustering: a comparison with K-means and latent class analysis. Communications in Statistics—Simulation and Computation, 37, 113.CrossRefGoogle Scholar
Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236244.CrossRefGoogle Scholar
Zahn, C.T. (1964). Approximating symmetric relations by equivalence relations. SIAM Journal on Applied Mathematics, 12, 840847.CrossRefGoogle Scholar