Hostname: page-component-5f745c7db-6bmsf Total loading time: 0 Render date: 2025-01-06T06:43:40.277Z Has data issue: true hasContentIssue false

Comparison of Ranks of Cross-Product and Covariance Solutions in Component Analysis

Published online by Cambridge University Press:  01 January 2025

M. C. Corballis*
Affiliation:
Mcgill University

Abstract

Suppose D is a data matrix for N persons and n variables, and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\dot D$$\end{document} is the matrix obtained from D by expressing the variables in deviation-score form. It is shown that if D has rank r, \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\dot D$$\end{document} will always have rank (r − 1) if r = N < n, otherwise it will generally have rank r. If \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\dot D$$\end{document} has rank s, D will always have rank s if s = n, but if s<n it will generally have rank (s + 1). Thus two cases can arise, Case A in which D has rank one greater than \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\dot D$$\end{document}, and Case B in which D has rank equal to \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\dot D$$\end{document}. Implications of this distinction for analysis of cross products versus analysis of covariances are briefly indicated.

Type
Original Paper
Copyright
Copyright © 1971 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gollob, H. F. Confounding sources of variation in factor-analysis techniques. Psychological Bulletin, 1968, 70, 330344 (a)CrossRefGoogle Scholar
Gollob, H. F. Rejoinder to Tucker's “Comments on confounding sources of variation in factor-analytic techniques,”. Psychological Bulletin, 1968, 70, 355360 (b)CrossRefGoogle Scholar
Graybill, F. A. Introduction to matrices with applications in statistics, 1969, Belmont, Calif.: WadsworthGoogle Scholar
Harris, C. W. Relations among factors of raw, deviation and double-centered score matrices. Journal of Experimental Education, 1953, 22, 5358CrossRefGoogle Scholar
Horst, P. Matrix algebra for social scientists, 1963, New York: Holt, Rinehart & WinstonGoogle Scholar
McDonald, R. P. Nonlinear factor analysis. Psychometric Monograph, 1967, Number 15.CrossRefGoogle ScholarPubMed
Ross, J. Mean performance and the factor analysis of learning data. Psychometrika, 1964, 29, 6773CrossRefGoogle Scholar
Tucker, L. R. Comments on “Confounding sources of variation in factor analytic techniques.”. Psychological Bulletin, 1968, 70, 345354CrossRefGoogle Scholar
Tucker, L. R. and Messick, S. An individual differences model for multidimensional scaling. Psychometrika, 1963, 28, 333367CrossRefGoogle Scholar
Weitzman, R. A. A factor analytic method for investigating differences between groups of individual learning curves. Psychometrika, 1963, 28, 6980CrossRefGoogle Scholar