No CrossRef data available.
Published online by Cambridge University Press: 01 January 2025
In this paper, we consider the Rasch model and suggest novel point estimators and confidence intervals for the ability parameter. They are based on a proposed confidence distribution (CD) whose construction has required to overcome some difficulties essentially due to the discrete nature of the model. When the number of items is large, the computations due to the combinatorics involved become heavy, and thus, we provide first- and second-order approximations of the CD. Simulation studies show the good behavior of our estimators and intervals when compared with those obtained through other standard frequentist and weakly informative Bayesian procedures. Finally, using the expansion of the expected length of the suggested interval, we are able to identify reasonable values of the sample size which lead to a desired length of the interval.