Hostname: page-component-5f745c7db-szhh2 Total loading time: 0 Render date: 2025-01-06T22:26:43.855Z Has data issue: true hasContentIssue false

Consistent Partial Least Squares for Nonlinear Structural Equation Models

Published online by Cambridge University Press:  01 January 2025

Theo K. Dijkstra*
Affiliation:
University of Groningen
Karin Schermelleh-Engel
Affiliation:
University of Frankfurt
*
Requests for reprints should be sent to Theo K. Dijkstra, Department of Economics, Econometrics & Finance, University of Groningen, Groningen, The Netherlands. E-mail: t.k.dijkstra@rug.nl

Abstract

Partial Least Squares as applied to models with latent variables, measured indirectly by indicators, is well-known to be inconsistent. The linear compounds of indicators that PLS substitutes for the latent variables do not obey the equations that the latter satisfy. We propose simple, non-iterative corrections leading to consistent and asymptotically normal (CAN)-estimators for the loadings and for the correlations between the latent variables. Moreover, we show how to obtain CAN-estimators for the parameters of structural recursive systems of equations, containing linear and interaction terms, without the need to specify a particular joint distribution. If quadratic and higher order terms are included, the approach will produce CAN-estimators as well when predictor variables and error terms are jointly normal. We compare the adjusted PLS, denoted by PLSc, with Latent Moderated Structural Equations (LMS), using Monte Carlo studies and an empirical application.

Type
Original Paper
Copyright
Copyright © 2013 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bollen, K.A. (1996). An alternative two stage least squares (2SLS) estimator for latent variable equations. Psychometrika, 61, 109121.CrossRefGoogle Scholar
Bollen, K.A., & Paxton, P. (1998). Two-stage least squares estimation of interaction effects. In Schumacker, R.E., & Marcoulides, G.A. (Eds.), Interaction and nonlinear effects in structural equation modeling. Mahwah: Erlbaum.Google Scholar
Chin, W.W., Marcolin, B.L., & Newsted, P.R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects. Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14, 189217.CrossRefGoogle Scholar
Cramér, H. (1946). Mathematical methods of statistics. Princeton: Princeton University Press.Google Scholar
DasGupta, A. (2008). Asymptotic theory of statistics and probability. New York: Springer.Google Scholar
Dijkstra, T.K., (1981, 1985). Latent variables in linear stochastic models (PhD thesis 1981, 2nd ed. 1985). Amsterdam, The Netherlands: Sociometric Research Foundation.Google Scholar
Dijkstra, T.K. (2009). PLS for path diagrams revisited, and extended. In Proceedings of the 6th international conference on partial least squares, Beijing. Available from http://www.rug.nl/staff/t.k.dijkstra/research.Google Scholar
Dijkstra, T.K. (2010). Latent variables and indices. In Esposito Vinzi, V., Chin, W.W., Henseler, J., & Wang, H. Handbook of Partial Least Squares: concepts, methods and applications (pp. 2346). Berlin: Springer.CrossRefGoogle Scholar
Dijkstra, T.K. (2011). Consistent Partial Least Squares estimators for linear and polynomial factor models. Unpublished manuscript, University of Groningen, The Netherlands. Available from http://www.rug.nl/staff/t.k.dijkstra/research.Google Scholar
Dijkstra, T.K. (2013). The simplest possible factor model estimator, and successful suggestions how to complicate it again. Unpublished manuscript, University of Groningen, The Netherlands. Available from http://www.rug.nl/staff/t.k.dijkstra/research.Google Scholar
Dijkstra, T.K., & Henseler, J. (2011). Linear indices in nonlinear structural equation models: best fitting proper indices and other composites. Quality and Quantity, 45, 15051518.CrossRefGoogle Scholar
Dijkstra, T.K., & Henseler, J., (2012). Consistent and asymptotically normal PLS-estimators for linear structural equations. In preparation.Google Scholar
Esposito Vinzi, V., Chin, W.W., Henseler, J., & Wang, H. (2010). Handbook of Partial Least Squares. Concepts, methods and applications. Berlin: Springer.CrossRefGoogle Scholar
Ferguson, T.S. (1996). A course in large sample theory. London: Chapman & Hall.CrossRefGoogle Scholar
Fleishman, A.I. (1978). A method for simulating non-normal distributions. Psychometrika, 43, 521532.CrossRefGoogle Scholar
Gray, H.L., & Schucany, W.R. (1972). The generalized statistic. New York: Dekker.Google Scholar
Headrick, T.C. (2010). Statistical simulation: power method polynomials and other transformations. Boca Raton: Chapman & Hall/CRC.Google Scholar
Henseler, J., & Chin, W.W. (2010). A comparison of approaches for the analysis of interaction effects between latent variables using partial least squares path modeling. Structural Equation Modeling, 17, 82109.CrossRefGoogle Scholar
Henseler, J., & Fassott, G. (2010). Testing moderating effects in PLS path models: an illustration of available procedures. In Esposito Vinzi, V., Chin, W.W., Henseler, J., & Wang, H. (Eds.), Handbook of Partial Least Squares: concepts, methods and applications (pp. 713735). Berlin: Springer.CrossRefGoogle Scholar
Jöreskog, K.G., & Yang, F. (1996). Non-linear structural equation models: the Kenny–Judd model with interaction effects. In Marcoulides, G.A., & Schumacker, R.E. (Eds.), Advanced structural equation modeling (pp. 5787). Mahwah: Erlbaum.Google Scholar
Kan, R. (2008). From moments of sum to moments of product. Journal of Multivariate Analysis, 99, 542554.CrossRefGoogle Scholar
Kenny, D.A., & Judd, C.M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 96, 201210.CrossRefGoogle Scholar
Kharab, A., & Guenther, R.B. (2012). An introduction to numerical methods: a MATLAB® approach. Boca Raton: CRC Press.Google Scholar
Klein, A.G., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65, 457474.CrossRefGoogle Scholar
Klein, A.G., & Muthén, B.O. (2007). Quasi maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects. Multivariate Behavioral Research, 42, 647673.CrossRefGoogle Scholar
Lee, S.-Y., Song, X.-Y., & Poon, W.-Y. (2007). Comparison of approaches in estimating interaction and quadratic effects of latent variables. Multivariate Behavioral Research, 39, 3767.CrossRefGoogle Scholar
Lee, S.-Y., Song, X.-Y., & Tang, N.-S. (2007). Bayesian methods for analyzing structural equation models with covariates, interaction, and quadratic latent variables. Structural Equation Modeling, 14, 404434.CrossRefGoogle Scholar
Little, T.D., Bovaird, J.A., & Widaman, K.F. (2006). On the merits of orthogonalizing powered and product terms: implications for modeling interactions among latent variables. Structural Equation Modeling, 13, 497519.CrossRefGoogle Scholar
Liu, J.S. (1994). Siegel’s formula via Stein’s identities. Statistics & Probability Letters, 21, 247251.CrossRefGoogle Scholar
Lu, I.R.R., Kwan, E., Thomas, D.R., & Cedzynski, M. (2011). Two new methods for estimating structural equation models: an illustration and a comparison with two established methods. International Journal of Research in Marketing, 28, 258268.CrossRefGoogle Scholar
Marsh, H.W., Wen, Z., & Hau, K.-T. (2004). Structural equation models of latent interactions: evaluation of alternative estimation strategies and indicator construction. Psychological Methods, 9, 275300.CrossRefGoogle ScholarPubMed
McDonald, R.P. (1996). Path analysis with composite variables. Multivariate Behavioral Research, 31, 239270.CrossRefGoogle ScholarPubMed
Mooijaart, A., & Bentler, P.M. (2010). An alternative approach for nonlinear latent variable models. Structural Equation Modeling, 17, 357373.CrossRefGoogle Scholar
Moosbrugger, H., Schermelleh-Engel, K., Kelava, A., & Klein, A.G. (2009). Testing multiple nonlinear effects in structural equation modeling: a comparison of alternative estimation approaches. In Teo, T., & Khine, M.S. (Eds.), Structural equation modeling in educational research: concepts and applications (pp. 103136). Rotterdam: Sense Publishers.Google Scholar
Schermelleh-Engel, K., Klein, A., & Moosbrugger, H. (1998). Estimating nonlinear effects using a latent moderated structural equations approach. In Schumacker, R.E., & Marcoulides, G.A. (Eds.), Interaction and nonlinear effects in structural equation modeling (pp. 203238). Mahwah: Erlbaum.Google Scholar
Schermelleh-Engel, K., Werner, C.S., Klein, A.G., & Moosbrugger, H. (2010). Nonlinear structural equation modeling: is partial least squares an alternative?. AStA Advances in Statistical Analysis, 94, 167184.CrossRefGoogle Scholar
Serfling, R. (1980). Approximation theorems of mathematical statistics. New York: Wiley.CrossRefGoogle Scholar
Shao, J., & Tu, D. (1995). The jackknife and bootstrap. New York: Springer.CrossRefGoogle Scholar
Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modelling. Computational Statistics & Data Analysis, 48, 159205.CrossRefGoogle Scholar
Vale, C.D., & Maurelli, V.A. (1983). Simulating multivariate nonnormal distributions. Psychometrika, 48, 465471.CrossRefGoogle Scholar
Wall, M.M., & Amemiya, Y. (2003). A method of moments technique for fitting interaction effects in structural equation models. British Journal of Mathematical and Statistical Psychology, 56, 4764.CrossRefGoogle ScholarPubMed
Wold, H.O.A. (1966). Nonlinear estimation by iterative least squares procedures. In David, F.N. (Eds.), Research papers in statistics: festschrift for J. Neyman (pp. 411444). New York: Wiley.Google Scholar
Wold, H.O.A. (1975). Path models with latent variables: the NIPALS approach. In Blalock, H.M. (Ed.), Quantitative sociology (pp. 307359). New York: Academic Press.CrossRefGoogle Scholar
Wold, H.O.A. (1982). Soft modelling: the basic design and some extensions. In Jöreskog, K.G., & Wold, H.O.A. (Eds.), Systems under indirect observation, Part II (pp. 155). Amsterdam: North-Holland.Google Scholar