Hostname: page-component-5f745c7db-rgzdr Total loading time: 0 Render date: 2025-01-06T22:14:16.574Z Has data issue: true hasContentIssue false

A Contribution to the Study of the Metric and Euclidean Structures of Dissimilarities

Published online by Cambridge University Press:  01 January 2025

Francis Caillez
Affiliation:
Institut National de la Recherche Agronomique
Pascale Kuntz*
Affiliation:
Ecole Nationale Supérieure des Télécommunications de Bretagne
*
Requests for reprints should be sent to Pascale Kuntz, Ecole Nationale Suprrieure des Trlrcommunications de Bretagne, BP 832, 29285 BREST Cedex, FRANCE.

Abstract

This paper is concerned with the geometric properties of dissimilarity coefficients defined on finite sets and especially with their Euclidean nature. We present several particular transformations which preserve Euclideanarity and we complete, through the study of a one-parameter family, the current knowledge of the metric and Euclidean structure of coefficients based on binary data. These results are directly deduced from two theorems which prove the positive semi-definite status of some quadratic forms which play a large role in some definitions of dissimilarity commonly used.

Type
Original Paper
Copyright
Copyright © 1996 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors wish to thank B. Fichet for his helpful suggestions, the associate Editor and an anonymous reviewer for comments and highly constructive criticisms on earlier drafts of the paper.

References

Beaulieu, F. B. (1989). A classification of presence/absence based dissimilarity coefficients. Journal of Classification, 6, 233246.CrossRefGoogle Scholar
Blumenthal, L. M. (1953). Theory and applications of distance geometry, London: Oxford University Press.Google Scholar
Braun-Blanquet, J. (1932). Plant sociology: The study of plants communities, New-York: McGraw-Hill.Google Scholar
Bullen, P. S., Mitrinovic, D. S., Vasic, P. M. (1988). Means and their inequalities, Boston: D. Reidel Publishing.CrossRefGoogle Scholar
Cailliez, F. (1983). The analytical solution to the additive constant problem. Psychometrika, 48, 305308.CrossRefGoogle Scholar
Cailliez, F., Pagès, J. P. (1976). Introduction à l'analyse des données [Introduction to data analysis], Paris, France: Société de Mathématiques Appliquées et de Sciences Humaines.Google Scholar
Cayley, A. (1841). On a theorem in the geometry of position. Cambridge Mathematical Journal, 2, 267271.Google Scholar
Charlton, J. H. (1974). Multidimensional scaling. Unpublished master of science thesis, Imperial College, University of London.Google Scholar
de Leeuw, J., Heiser, W. (1982). Theory of multidimensional scaling. In Krishnaiah, P. R., Kanal, L. N. (Eds.), Handbook of statistics (pp. 285316). Amsterdam: North Holland.Google Scholar
Deza, M., Maehara, H. (1990). Metric transforms and Euclidean embeddings. Transactions of the American Mathematical Society, 317(2), 661671.CrossRefGoogle Scholar
Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26, 297302.CrossRefGoogle Scholar
Fichet, B. (1983). Analyse factorielle sur tableaux de dissimilarité—Application aux données sur signes de présence-absence en médecine [Factor analysis on arrays of dissimilarities—Application to data on presence-absence signs in medicine], France: Université Aix-Marseille II.Google Scholar
Fichet, B., Le Calvé, G. (1984). Structure géométrique des principaux indices de dissimilarité sur signe de présence-absence [Geometrical structure of main dissimilarity coefficients on presence/absence signs]. Statistique et Analyse de Données, 9, 1144.Google Scholar
Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate data analysis. Biometrika, 53, 315328.CrossRefGoogle Scholar
Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 27, 857874.CrossRefGoogle Scholar
Gower, J. C. (1982). Euclidean distance geometry. The Mathematical Scientist, 7, 114.Google Scholar
Gower, J. C. (1985). Properties of Euclidean and Non-Euclidean Distance Matrices. Linear Algebra and its Applications, 67, 8197.CrossRefGoogle Scholar
Gower, J. C. (1986). Euclidean distance matrices. In De Leeuw, J. (Eds.), Multidimensional Data Analysis (pp. 1122). Leiden: DWSO Press.Google Scholar
Gower, J. C., Legendre, P. (1986). Metric and euclidean properties of dissimilarity coefficients. Journal of Classification, 3, 548.CrossRefGoogle Scholar
Hardy, G. H., Littlewood, J. E., Polya, G. (1952). Inequalities, London: Cambridge University Press.Google Scholar
Hubalek, Z. (1982). Coefficients of association and similarity based on binary (presence-absence) data: An evaluation. Biological Review, 57, 669689.CrossRefGoogle Scholar
Joly, S., Le Calvé, G. (1986). Etude des puissances d'une distance [A study of the powers of metric]. Statistique et Analyse de Données, 11(3), 3050.Google Scholar
Kruskal, J. B., Wish, M. (1978). Multidimensional scaling, Beverly Hills: Sage Publications.CrossRefGoogle Scholar
Kulczynski, S. (1928). Zespoly roslin w Pieninach.—Die Pflanzenassoziationen der Pieninen. Bulletin international de l'académie polonaise des sciences et des lettres, Classe des Sciences Mathématiques et Naturelles, série B, Supplément II, 57203.Google Scholar
Lerman, I. C. (1970). Les bases de la classification automatique [The basis of automatic classification], Paris: Gauthier-Villars.Google Scholar
Lingoes, J. C. (1971). Some boundary conditions for a monotone analysis of symmetric matrices. Psychometrika, 36, 195203.CrossRefGoogle Scholar
Menger, K. (1928). Untersuchungen über allgemeine Metrik. Mathematische Annalen, 100, 75163.CrossRefGoogle Scholar
Ochiaï, A. (1957). Zoogeographic studies of the soleoid fishes found in Japan and its neighbouring regions. Bulletin of the Japanese Society for Scientific Fisheries, 22, 526530.CrossRefGoogle Scholar
Schoenberg, I. J. (1935). Remarks to Maurice Frechet's article: sur la définition axiomatique d'une classe d'espaces distanciés vectoriellement applicable sur l'espace de Hilbert. Annals of Mathematics, 36, 724732.CrossRefGoogle Scholar
Schoenberg, I. J. (1937). On certain metric spaces arising from euclidean spaces by a change of metric and their imbedding in Hilbert space. Annals of Mathematics, 38(4), 787793.CrossRefGoogle Scholar
Schoenberg, I. J. (1938). Metric spaces and positive definite functions. Transactions of the American Mathematical Society, 44, 522536.CrossRefGoogle Scholar
Schur, J. (1911). Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. Journal für die reine und angewandte Mathematik, 140, 128.CrossRefGoogle Scholar
Shepard, R. N. (1974). Representation of structure in similarity data: problems and prospects. Psychometrika, 39, 373421.CrossRefGoogle Scholar
Simpson, G. G. (1960). Notes on the measurement of faunal resemblance. American Journal of Science, 258-A, 300311.Google Scholar
Sokal, R. R., Sneath, P. H. (1963). Principles of numerical taxonomy, San Francisco: W. H. Freeman.Google Scholar
Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327352.CrossRefGoogle Scholar
von Neumann, J., Schoenberg, I. J. (1941). Fourier integrals and metric geometry. Transactions of the American Mathematical Society, 50, 226251.CrossRefGoogle Scholar
Wynn, H. P., Charleton, J. R. H. (1982). Discussion of Paper by Ramsay. Journal of the Royal Statistical Society, Series A, 145(3), 308308.Google Scholar
Young, G., Householder, A. S. (1938). Discussion of a set of points in terms of their mutual distances. Psychometrika, 3, 1922.CrossRefGoogle Scholar
Zegers, F. E., ten Berge, J. M. F. (1985). A family of association coefficients for metric scales. Psychometrika, 50, 1724.CrossRefGoogle Scholar
Zegers, F. E. (1986). Two classes of element-wise transformations preserving the PSD nature of coefficient matrices. Journal of Classification, 3, 4953.CrossRefGoogle Scholar