Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-07T18:17:57.314Z Has data issue: false hasContentIssue false

Control Theory Forecasts of Optimal Training Dosage to Facilitate Children’s Arithmetic Learning in a Digital Educational Application

Published online by Cambridge University Press:  01 January 2025

Sy-Miin Chow*
Affiliation:
The Pennsylvania State University
Jungmin Lee
Affiliation:
The Pennsylvania State University
Abe D. Hofman
Affiliation:
University of Amsterdam
Han L. J. van der Maas
Affiliation:
University of Amsterdam
Dennis K. Pearl
Affiliation:
The Pennsylvania State University
Peter C. M. Molenaar
Affiliation:
The Pennsylvania State University
*
Correspondence should be made to Sy-Miin Chow, The Pennsylvania State University, 119 Health and Human Development Building, University Park, PA 16802, USA. Email: symiin@psu.edu

Abstract

Education can be viewed as a control theory problem in which students seek ongoing exogenous input—either through traditional classroom teaching or other alternative training resources—to minimize the discrepancies between their actual and target (reference) performance levels. Using illustrative data from n=784\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n=784$$\end{document} Dutch elementary school students as measured using the Math Garden, a web-based computer adaptive practice and monitoring system, we simulate and evaluate the outcomes of using off-line and finite memory linear quadratic controllers with constraintsto forecast students’ optimal training durations. By integrating population standards with each student’s own latent change information, we demonstrate that adoption of the control theory-guided, person- and time-specific training dosages could yield increased training benefits at reduced costs compared to students’ actual observed training durations, and a fixed-duration training scheme. The control theory approach also outperforms a linear scheme that provides training recommendations based on observed scores under noisy and the presence of missing data. Design-related issues such as ways to determine the penalty cost of input administration and the size of the control horizon window are addressed through a series of illustrative and empirically (Math Garden) motivated simulations.

Type
Application Reviews and Case Studies
Copyright
copyright © 2022 The Author(s) under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11336-021-09829-3.

References

Academy, K. (2017). Khan academy. Retrieved October 20, 2017, from https://www.khanacademy.org/ Google Scholar
Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika, 60 (2), 255265. CrossRefGoogle Scholar
Alspach, D. (1975). A stochastic control algorithm for systems with control dependent plant and measurement noise. Computers & Electrical Engineering, 2 (4), 297306. CrossRefGoogle Scholar
Åström, K. J., & Murray, R. M. (2008). Feedback systems: An introduction for scientists and engineers, Princeton: Princeton University Press Google Scholar
Bar-Shalom, Y., & Tse, E. (1976). Concepts and methods in stochastic control. In C. Leondes (Ed.), (Vol. 12, p. 99-172). Academic Press. https://doi.org/10.1016/B978-0-12-012712-2.50009-3 CrossRefGoogle Scholar
Bavdekar, V. A., Bhushan Gopaluni, R., & Shah, S. L. (2013). A comparison of moving horizon and bayesian state estimators with an application to a ph process. IFAC Proceedings Volumes, 46 (32), 160165. 10th IFAC International Symposium on Dynamics and Control of Process Systems CrossRefGoogle Scholar
Bellman, R. (1964). Control theory. Scientific American, 211, 186200. CrossRefGoogle ScholarPubMed
Bemporad, A., Morari, M., Dua, V., & Pistikopoulos, E. N. (2002). The explicit linear quadratic regulator for constrained systems. Automatica, 38 (1), 320. CrossRefGoogle Scholar
Biddlecomb, B. D. (2002). Numerical knowledge as enabling and constraining fraction knowledge: An example of the reorganization hypothesis. The Journal of Mathematical Behavior, 21 (2), 167190. CrossRefGoogle Scholar
Blanton, M., Stephens, A., Knuth, E., Gardiner, A. M., Isler, I., & Kim, J. S. (2015). The development of children’s algebraic thinking: The impact of a comprehensive early algebra intervention in third grade. Journal for Research in Mathematics Education, 46 (1), 3987. CrossRefGoogle Scholar
Brinkhuis, M. J., Savi, A. O., Hofman, A. D., Coomans, F., van Der Maas, H. L., & Maris, G. (2018). Learning as it happens: A decade of analyzing and shaping a large-scale online learning system. Journal of Learning Analytics, 5 (2), 2946. CrossRefGoogle Scholar
Carver, C. S., & Scheier, M. F. (1982). Control theory: A useful conceptual framework for personality-social, clinical, and health psychology. Psychological Bulletin, 92, 111135. CrossRefGoogle ScholarPubMed
Chow, S. M., Grimm, K. J., Guillaume, F., Dolan, C. V., & McArdle, J. J. (2013). Regime-switching bivariate dual change score model. Multivariate Behavioral Research, 48 (4), 463502. CrossRefGoogle ScholarPubMed
Chow, S. M., Hamaker, E. J., & Allaire, J. C. (2009). Using innovative outliers to detecting discrete shifts in dynamics in group-based state-space models. Multivariate Behavioral Research, 44, 465496. CrossRefGoogle ScholarPubMed
Chow, S. M., Ho, M. H. R., Hamaker, E. J., & Dolan, C. V. (2010). Equivalences and differences between structural equation and state-space modeling frameworks. Structural Equation Modeling, 17, 303332. CrossRefGoogle Scholar
Chow, S. M., & Zhang, G. (2013). Nonlinear regime-switching state-space (RSSS) models. Psychometrika: Application Reviews and Case Studies, 78 (4), 740768. CrossRefGoogle ScholarPubMed
Dowker, A. (2015). Individual differences in arithmetical abilities: The componential nature of arithmetic. In The Oxford handbook of numerical cognition (pp. 878–894). New York, NY: Oxford University Press.Google Scholar
Durbin, J., & Koopman, S. J. (2001). Time series analysis by state space methods, New York, NY: Oxford University Press. Google Scholar
Goodwin, G., Seron, M. M., & de Don, J. A. (2005). Constrained control and estimation: An optimisation approach, 1 London: Springer. CrossRefGoogle Scholar
Graeber, A. O., & Tirosh, D. (1990). Insights fourth and fifth graders bring to multiplication and division with decimals. Educational Studies in Mathematics, 21 (6), 565588. CrossRefGoogle Scholar
Hackenberg, A. J., & Lee, M. Y. (2015). Relationships between students’ fractional knowledge and equation writing. Journal for Research in Mathematics Education, 46 (2), 196243. CrossRefGoogle Scholar
Hadass, R., & Bransky, J. (1991). Meanings of division and their implication for science teaching—a survey amongst elementary school teachers. International Journal of Mathematical Education in Science and Technology, 22 (2), 309315. CrossRefGoogle Scholar
Hamilton, J. D. (1994). Time series analysis, Princeton, NJ: Princeton University Press. CrossRefGoogle Scholar
Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter, Princeton, NJ: Princeton University Press. Google Scholar
Harvey, A. C. (2001). Forecasting, structural time series models and the Kalman filter, Cambridge: Cambridge University Press. Google Scholar
Jansen, B. R., Hofman, A. D., Savi, A., Visser, I., & van der Maas, H. L. (2016). Self-adapting the success rate when practicing math. Learning and Individual Differences, 51, 110. CrossRefGoogle Scholar
Rawlings, J. B., Mayne, D., & Diehl, M. (2017). Model predictive control: Theory, design, and computation, 2 Madison: Nob Hill Publishing. Google Scholar
Klinkenberg, S., Straatemeier, M., & van der Maas, H. L. J. (2011). Computer adaptive practice of Maths ability using a new item response model for on the fly ability and difficulty estimation. Computers & Education, 57 (2), 18131824. CrossRefGoogle Scholar
Kuo, B. C. (1991). Automatic control systems, 6 Englewood Cliffs, NJ: Prentice Hall. Google Scholar
Kwon, W. H., & Han, S. H. (2005). Receding horizon control: Model predictive control for state models, London: Springer. Google Scholar
Lee, J. E. (2007). Making sense of the traditional long division algorithm. The Journal of Mathematical Behavior, 26 (1), 4859. CrossRefGoogle Scholar
Li, Y., & Silver, E. A. (2000). Can younger students succeed where older students fail? An examination of third graders’ solutions of a division-with-remainder (DWR) problem. Journal of Mathematical Behavior, 19 (2), 233246. CrossRefGoogle Scholar
Liu, J., Wang, W., Golnaraghi, F., & Kubica, E. (2010). A novel fuzzy framework for nonlinear system control. Fuzzy Sets and Systems, 161, 186200. CrossRefGoogle Scholar
Ljung, L., & Söderström, (1983). Theory and practice of recursive identification, Cambridge: MIT Press. Google Scholar
Lo, J. J., & Watanabe, T. (1997). Developing ratio and proportion schemes: A story of a fifth grader. Journal for Research in Mathematics Education, 28 (2), 216236. CrossRefGoogle Scholar
Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores, Reading, MA: Addison-Wesley. Google Scholar
Lu, Q., & Zhang, X. (2016). A mini-course on stochastic control. In Control and inverse problems for partial differential equations (pp. 171–254). https://doi.org/10.1142/9789813276154_0004 CrossRefGoogle Scholar
Lütkepohl, H. (2005). Introduction to multiple time series analysis, 2 New York, NY: Springer. CrossRefGoogle Scholar
Maris, G., & van der Maas, H. (2012). Navigating massive open online courses. Psychometrika, 77 (4), 615633. CrossRefGoogle Scholar
McArdle, J. J., Hamagami, F. Collins, L., & Sayer, A. (2001). Latent difference score structural models for linear dynamic analysis with incomplete longitudinal data. New methods for the analysis of change, Washington, DC: American Psychological Association. 139175. CrossRefGoogle Scholar
Molenaar, P. C. (2010). Note on optimization of individual psychotherapeutic processes. Journal of Mathematical Psychology, 54 (1), 208213. CrossRefGoogle Scholar
Mulligan, J. T., & Mitchelmore, M. C. (1997). Young children’s intuitive models of multiplication and division. Journal for Research in Mathematics Education, 28 (3), 309330. CrossRefGoogle Scholar
Ou, L., Hunter, M. D., & Chow, S. (2019). What’s for dynr: A package for linear and nonlinear dynamic modeling in R. The R Journal, CrossRefGoogle ScholarPubMed
Park, J. Y., Joo, S. H., Cornillie, F., van der Maas, H. L., & Van den Noortgate, W. (2019). An explanatory item response theory method for alleviating the cold-start problem in adaptive learning environments. Behavior Research Methods, 51 (2), 895909. CrossRefGoogle ScholarPubMed
Rivera, D. E., Pew, M. D., & Collins, L. M. (2007). Using engineering control principles to inform the design of adaptive interventions: A conceptual introduction. Drug and Alcohol Dependence, 88S, S31S40. CrossRefGoogle Scholar
Rose, T. (2016). The end of average: How we succeed in a world that values sameness. San Francisco, CA: HarperOne. http://www.harpercollins.com/9780062358363/the-end-of-average Google Scholar
Savi, A. O., van der Maas, H. L. J., & Maris, G. K. J. (2015). Navigating massive open online courses. Science, 347 (6225), 958 CrossRefGoogle ScholarPubMed
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461464. CrossRefGoogle Scholar
Schweppe, F. (1965). Evaluation of likelihood functions for Gaussian signals. IEEE Transactions on Information Theory, 11, 6170. CrossRefGoogle Scholar
Seron, M. M., Goodwin, G. C., & De Doná, J. A. (2003). Characterisation of receding horizon control for constrained linear systems. Asian Journal of Control, 5 (2), 271286. CrossRefGoogle Scholar
Shumway, R. H. (2000). Dynamic mixed models for irregularly observed time series. Resenhas—Reviews of the Institute of Mathematics and Statistics, 4, 433456. Google Scholar
Shumway, R. H., & Stoffer, D. S. (2006). Time series analysis and its applications, New York, NY: Springer. Google Scholar
Taguchi, G., Chowdhury, S., & Wu, Y. (2005). Tagushi’s quality engineering handbook, Hoboken, NJ: Wiley. Google Scholar
van den Berg, J. (2014). Iterated LQR smoothing for locally-optimal feedback control of systems with non-linear dynamics and non-quadratic cost. In 2014 American control conference (pp. 1912–1918). https://doi.org/10.1109/ACC.2014.6859404 CrossRefGoogle Scholar
Wang, Q., Molenaar, P., Harsh, S., Freeman, K., Xie, J., Gold, C., & Ulbrecht, J. (2014). Personalized state-space modeling of glucose dynamics for type 1 diabetes using continuously monitored glucose, insulin dose, and meal intake: An extended Kalman filter approach. Journal of Diabetes Science and Technology, 8 (2), 331345. CrossRefGoogle ScholarPubMed
Zarchan, P., & Musoff, H. (2000). Fundamentals of Kalman filtering: A practical approach. Progress in astronautics and aeronautics, Reston: American Institute of Aeronautics and Astronautics Inc. Google Scholar
Zhang, J., Li, W., Wang, K., & Jin, R. (2014). Process adjustment with an asymmetric quality loss function. Journal of Manufacturing Systems, 33 (1), 159165. CrossRefGoogle Scholar
Supplementary material: File

Chow et al. Supplementary material

Chow et al. Supplementary material 1
Download Chow et al. Supplementary material(File)
File 22.2 KB
Supplementary material: File

Chow et al. Supplementary material

Chow et al. Supplementary material 2
Download Chow et al. Supplementary material(File)
File 10.8 KB