Hostname: page-component-5f745c7db-96s6r Total loading time: 0 Render date: 2025-01-06T21:27:42.645Z Has data issue: true hasContentIssue false

Covariance Model Simulation Using Regular Vines

Published online by Cambridge University Press:  01 January 2025

Steffen Grønneberg
Affiliation:
BI Norwegian Business School
Njål Foldnes*
Affiliation:
BI Norwegian Business School
*
Correspondence should be made to Njål Foldnes, Department of Economics, BI Norwegian Business School, 4014 Stavanger, Norway. Email: njal.foldnes@bi.no

Abstract

We propose a new and flexible simulation method for non-normal data with user-specified marginal distributions, covariance matrix and certain bivariate dependencies. The VITA (VIne To Anything) method is based on regular vines and generalizes the NORTA (NORmal To Anything) method. Fundamental theoretical properties of the VITA method are deduced. Two illustrations demonstrate the flexibility and usefulness of VITA in the context of structural equation models. R code for the implementation is provided.

Type
Original Paper
Copyright
Copyright © 2017 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic supplementary material The online version of this article (doi:10.1007/s11336-017-9569-6) contains supplementary material, which is available to authorized users.

References

Bedford, T. & Cooke, R. M. (2002). Vines: A new graphical model for dependent random variables. Annals of Statistics 30, 10311068CrossRefGoogle Scholar
Bentler, P. (2006). EQS 6 structural equations program manual. Encino: Multivariate Software, Inc.Google Scholar
Bentler, P. M. & Tong, X. (2013). Evaluation of a new mean scaled and moment adjusted test statistic for SEM. Structural Equation Modeling: A Multidisciplinary Journal 20, 148156Google Scholar
Biller, B. (2009). Copula-based multivariate input models for stochastic simulation. Operations Research 57, 878892CrossRefGoogle Scholar
Billingsley, P. (1995). Probability and measure. Wiley series in probability and mathematical statistics New York: WileyGoogle Scholar
Boomsma, A. (1983). On the robustness of LISREL (maximum likelihood estimation) against small sample size and non-normality. Ph.D. thesis, University of Groningen.Google Scholar
Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology 37, 6283CrossRefGoogle ScholarPubMed
Cario, M. C. & Nelson, B. L. (1996). Autoregressive to anything: Time-series input processes for simulation. Operations Research Letters 19, 5158CrossRefGoogle Scholar
Cario, M. C., & Nelson, B. L. (1997). Modeling and generating random vectors with arbitrary marginal distributions and correlation matrix. Tech. rep.: Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois.Google Scholar
Curran, P. J. West, S. G. & Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods 1, 1629CrossRefGoogle Scholar
Dissmann, J. Brechmann, E. C. Czado, C. & Kurowicka, D. (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics and Data Analysis 59, 5269CrossRefGoogle Scholar
Erhard, V. & Czado, C. (2009). Sampling count variables with specified pearson correlation: A comparison between a naive and a c-vine sampling approach. In D. Kurowicka & H. Joe (Eds.), Dependence modeling: Vine copula handbook (pp. 73–87). Singapore: World Scientific.Google Scholar
Foldnes, N. & Grønneberg, S. (2015). How general is the Vale–Maurelli simulation approach?. Psychometrika 80, 10661083CrossRefGoogle Scholar
Foldnes, N. & Olsson, U. H. (2016). A simple simulation technique for nonnormal data with prespecified skewness, kurtosis, and covariance matrix. Multivariate Behavioral Research 51, 207219 PMID: 27014851CrossRefGoogle ScholarPubMed
Fouladi, R. (2000). Performance of modified test statistics in covariance and correlation structure analysis under conditions of multivariate nonnormality. Structural Equation Modeling: A Multidisciplinary Journal 7, 356410CrossRefGoogle Scholar
Hobæk Haff, I. Aas, K. & Frigessi, A. (2010). On the simplified pair-copula construction—Simply useful or too simplistic?. Journal of Multivariate Analysis 101, 12961310CrossRefGoogle Scholar
Homem-de Mello, T. & Bayraksan, G. (2014). Monte carlo sampling-based methods for stochastic optimization. Surveys in Operations Research and Management Science 19, 5685CrossRefGoogle Scholar
Joe, H. (1996). Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters. In L. Rueschendorf, B. Schweizer, & M. Taylor (Eds.), Distributions with fixed marginals and related topics (pp. 120–141). IMS Lecture Notes-Monograph Series, Hayward.CrossRefGoogle Scholar
Joe, H. Balakrishnan, N. Castillo, E. & Sarabia, J. (2006). Range of correlation matrices for dependent random variables with given marginal distributions. Advances in distribution theory, order statistics and inference, in honor of Barry Arnold Boston: Birkhauser 125142Google Scholar
Joe, H. (2014). Dependence modeling with copulas London: Chapman & HallCrossRefGoogle Scholar
Johnson, N. (1949). Systems of frequency curves generated by methods of translation. Biometrika 36, 149176CrossRefGoogle ScholarPubMed
Li, S. T. & Hammond, J. L. (1975). Generation of pseudorandom numbers with specified univariate distributions and correlation coefficients. IEEE transactions on systems, man, and cybernetics (pp. 557–561).CrossRefGoogle Scholar
Mair, P. Satorra, A. & Bentler, P. M. (2012). Generating nonnormal multivariate data using copulas: Applications to SEM. Multivariate Behavioral Research 47, 547565CrossRefGoogle ScholarPubMed
Muthén, B. & Muthén, L. (2012). Mplus version 7: User’s guide Los Angeles, CA: Muthén & MuthénGoogle Scholar
O’Brien, G. (1975). The comparison method for stochastic processes. The Annals of Probability 3, 8088Google Scholar
Pearson, K. (1895). Contributions to the mathematical theory of evolution. ii. Skew variation in homogeneous material. Philosophical Transactions of the Royal Society of London A, 59, 343–414.Google Scholar
R Core Team. (2015). R: A Language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Rosseel, Y. (2012). lavaan: An r package for structural equation modeling. Journal of Statistical Software 48, 136CrossRefGoogle Scholar
Rüschendorf, L. (2009). On the distributional transform, Sklar’s theorem, and the empirical copula process. Journal of Statistical Planning and Inference 139, 39213927CrossRefGoogle Scholar
Satorra, A. (1989). Alternative test criteria in covariance structure analysis: A unified approach. Psychometrika 54, 131151CrossRefGoogle Scholar
Schepsmeier, U. Stoeber, J. Brechmann, E. C. & Graeler, B. (2015). VineCopula: Statistical Inference of Vine Copulas. R Package Version 1, 4Google Scholar
Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. Université Paris 8.Google Scholar
Vale, C. & Maurelli, V. (1983). Simulating nonnormal distributions. Psychometrika 48, 465471CrossRefGoogle Scholar
Supplementary material: File

Grønneberg and Foldnes supplementary material

Grønneberg and Foldnes supplementary material
Download Grønneberg and Foldnes supplementary material(File)
File 27.6 KB