Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T19:13:13.566Z Has data issue: false hasContentIssue false

A Criterion for Selecting Variables in a Regression Analysis

Published online by Cambridge University Press:  01 January 2025

H. Linhart*
Affiliation:
South African Council for Scientific and Industrial Research, Johannesburg

Abstract

Methods are given for deciding whether to use some or no predictor variables in a regression analysis. Previously obtained results on the more general problem, whether to use k or k − r predictor variables are reviewed with emphasis on applications.

Type
Original Paper
Copyright
Copyright © 1960 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cramér, H. Mathematical methods of statistics, Princeton: Princeton Univ. Press, 1946.Google Scholar
David, F. N. Tables of the ordinates and probability integral of the distribution of the correlation coefficient in small samples, London: Biometrika Office, 1938.Google Scholar
Dwyer, P. S. Linear computations, New York: Wiley, 1951.Google Scholar
Dwyer, P. S. The relative efficacy and economy of various test selection methods. Dept. of the Army, U.S.A.G.O., Personnel Res. Sec. Rep. No. 957, 1952.Google Scholar
Ezekiel, M. Methods of correlation analysis, New York: Wiley, 1941.Google Scholar
Hsu, P. L. Notes on Hotelling's generalized. T. Ann. math. Statist., 1938, 9, 231243.CrossRefGoogle Scholar
Linhart, H. Confidence limits for the coefficient of product moment correlation in bivariate normal populations. J. nat. Inst. Personnel Res., 1956, 6, 153174.Google Scholar
Linhart, H. Critère de sélection pour le choix des variables dans l'analyse de régression. Revue suisse d'Economie politique et de Statistique, 1958, 94, 202232.Google Scholar
Summerfield, A. and Lubin, A. A square root method of selecting a minimum set of variables in multiple regression: I. The method. Psychometrika, 1951, 16, 271284.CrossRefGoogle Scholar
Wilks, S. S. Certain generalizations in the analysis of variance. Biometrika, 1932, 24, 471494.CrossRefGoogle Scholar