Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T10:04:11.689Z Has data issue: false hasContentIssue false

Dealing with Reflection Invariance in Bayesian Factor Analysis

Published online by Cambridge University Press:  01 January 2025

Elena A. Erosheva*
Affiliation:
University of Washington
S. McKay Curtis
Affiliation:
University of Washington
*
Correspondence should be made to Elena A. Erosheva, Department of Statistics, University of Washington, Box 354320, Seattle, WA 98195, USA. Email: erosheva@u.washington.edu

Abstract

This paper considers the reflection unidentifiability problem in confirmatory factor analysis (CFA) and the associated implications for Bayesian estimation. We note a direct analogy between the multimodality in CFA models that is due to all possible column sign changes in the matrix of loadings and the multimodality in finite mixture models that is due to all possible relabelings of the mixture components. Drawing on this analogy, we derive and present a simple approach for dealing with reflection in variance in Bayesian factor analysis. We recommend fitting Bayesian factor analysis models without rotational constraints on the loadings—allowing Markov chain Monte Carlo algorithms to explore the full posterior distribution—and then using a relabeling algorithm to pick a factor solution that corresponds to one mode. We demonstrate our approach on the case of a bifactor model; however, the relabeling algorithm is straightforward to generalize for handling multimodalities due to sign invariance in the likelihood in other factor analysis models.

Type
Original Paper
Copyright
Copyright © 2017 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. W., Rubin, H. & Neyman, J. (1956). Statistical inference in factor analysis. Proceedings of the third berkeley symposium on mathematical statistics and probability, Oakland: University of California Press 111150.Google Scholar
Bafumi, J., & Gelman, A., & Park, D. K., & Kaplan, N. (2005). Practical issues in implementing and understanding Bayesian ideal point estimation. Political Analysis, 13, 171187CrossRefGoogle Scholar
Bishop, Y., & Fienberg, S. E., & Holland, P. (1975). Discrete multivariate analysis: Theory and practice, Cambridge: The MIT press.Google Scholar
Bollen, K. A. (1989). Structural equations with latent variables, New York: WileyCrossRefGoogle Scholar
Celeux, G., & Forbes, F., & Robert, C. P., & Titterington, D. M. (2006). Deviance information criteria for missing data models. Bayesian Analysis, 1, 651673CrossRefGoogle Scholar
Celeux, G., & Hurn, M., & Robert, C. P. (2000). Computational and inferential difficulties with mixture posterior distributions. Journal of the American Statistical Association, 95, 957970CrossRefGoogle Scholar
Clarkson, D. B. (1979). Estimating the standard eoors of rotated factor loadings by jackknifing. Psychometrika, 44, 297314CrossRefGoogle Scholar
Congdon, P. (2003). Applied Bayesian modelling, New York: WileyCrossRefGoogle Scholar
Congdon, P. (2006). Bayesian statistical modelling, New York: WileyCrossRefGoogle Scholar
Cressie, N., & Read, T. (1989). Pearson’s χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^2$$\end{document} and the loglikelihood ration statistic G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^2$$\end{document}—A comparative review. International Statistical Review, 57, 1943CrossRefGoogle Scholar
Curtis, S. M., & Erosheva, E. A. (2016). relabeLoadings: Relabel loadings from MCMC output for confirmatory factor analysis. R package version 1.0.Google Scholar
Dolan, C. V., & Molenaar, P. C. (1991). A comparison of four methods of calculating standard errors of maximum-likelihood estimates in the analysis of covariance structure. British Journal of Mathematical and Statistical Psychology, 44, 359368CrossRefGoogle Scholar
Drton, M. (2009). Likelihood ratio tests and singularities. The Annals of Statistics, 37, 979–1012.CrossRefGoogle Scholar
Erosheva, E. A., & Curtis, S. M. (2011). Dealing with rotational invariance in Bayesian confirmatory factor analysis. Technical Report 589, University of Washington.Google Scholar
Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 1, 515533CrossRefGoogle Scholar
Gelman, A., & Carlin, J. B., & Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis, New York: Chapman & Hall/CRC.Google Scholar
Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel and hierarchical models, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Geweke, J. Bernardo, J. M., & Berger, J. O., & Dawid, A. P., & Smith, A. F. M. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior moments. Bayesian statistics 4, Oxford: Clarendon Press 169194.CrossRefGoogle Scholar
Geweke, J., & Zhou, G. (1996). Measuring the pricing error of the arbitrage pricing theory. Review of Financial Studies, 9, 557587CrossRefGoogle Scholar
Geyer, C. J., & Thompson, E. A. (1992). Constrained Monte Carlo maximum likelihood for dependent data. Journal of the Royal Statistical Society, Series B (Methodological), 54, 657–699.CrossRefGoogle Scholar
Ghosh, J., & Dunson, D. (2008). Bayesian model selection in factor analytic models. In D. B. Dunson (Ed.), Random effect and latent variable model selection (pp. 151–163). Berlin: Springer.Google Scholar
Ghosh, J., & Dunson, D. (2009). Default prior distributions and efficient posterior computation in Bayesian factor analysis. Journal of Computational and Graphical Statistics, 18, 306320CrossRefGoogle ScholarPubMed
Gibbons, R. D., & Hedeker, D. R. (1992). Full-information item bi-factor analysis. Psychometrika, 57, 423436CrossRefGoogle Scholar
Gruhl, J., & Erosheva, E. A., & Crane, P. K. (2013). et al. A semiparametric approach to mixed outcome latent variable models: Estimating the association between cognition and regional brain volumes. The Annals of Applied Statistics, 7, 23612383CrossRefGoogle Scholar
Holzinger, K. J., & Swineford, F. (1937). The bi-factor method. Psychometrika, 2, 4154CrossRefGoogle Scholar
Holzinger, K. J., & Swineford, F. (1939). A study in factor analysis: The stability of a bi-factor solution, no. 48 in Supplementary Educational Monographs, University of Chicago.Google Scholar
Jackman, S. (2001). Multidimensional analysis of roll call data via Bayesian simulation: Identification, estimation, inference, and model checking. Political Analysis, 9, 227241CrossRefGoogle Scholar
Jasra, A., & Holmes, C., & Stephens, D. (2005). Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science, 20, 5067CrossRefGoogle Scholar
Jennrich, R. I. (1978). Rotational equivalence of factor laoding matrices with specified values. Psychometrika, 43, 421426CrossRefGoogle Scholar
Lee, S-Y (1981). A Bayesian approach to confirmatory factor analysis. Psychometrika, 46, 15316010.1007/BF02293896CrossRefGoogle Scholar
Lee, S-Y (2007). Structural equation modeling: A Bayesian approach, West Sussex: WileyCrossRefGoogle Scholar
Loken, E. (2005). Identification constraints and inference in factor analysis models. Structural Equation Modeling, 12, 232244CrossRefGoogle Scholar
Lopes, H. F., & West, M. (2004). Bayesian model assessment in factor analysis. Statistica Sinica, 14, 4167.Google Scholar
Lunn, D. J., & Thomas, A., & Best, N., & Spiegelhalter, D. (2000). WinBUGS-A Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing, 10, 325337CrossRefGoogle Scholar
Martin, J., & McDonald, R. (1975). Bayesian estimation in unrestricted factor analysis: A treatment for Heywood cases. Psychometrika, 40, 50551710.1007/BF02291552CrossRefGoogle Scholar
Matlosz, K. (2013). Bayesian multidimensional scaling model for ordinal preference data. Ph.D. thesis, Columbia University.Google Scholar
Millsap, R. E. (2001). When trivial constraints are not trivial: The choice of uniqueness constraints in confirmatory factor analysis. Structural Equation Modeling, 8, 117CrossRefGoogle Scholar
Muirhead, R. J. (1982). Aspects of multivariate statistical theory, New York: WileyCrossRefGoogle Scholar
Muthén, L. K., & Muthén, B. O. (2005). Mplus: Statistical analysis with latent variables: User’s guide, Los Angeles: Muthén & Muthén.Google Scholar
Nishihara, R., Minka, T., & Tarlow, D. (2013). Detecting parameter symmetries in probabilistic models. arXiv preprint arXiv:1312.5386.Google Scholar
Peeters, C. F. (2012). Bayesian exploratory and confirmatory factor analysis: Perspectives on constrained-model selection. Ph.D. thesis, Utrecht University.Google Scholar
Pennell, R. (1972). Routinely computable confidence intervals for factor loadings using the ’Jack-knife’. British Journal of Mathematical and Statistical Psychology, 25, 107114CrossRefGoogle Scholar
Quinn, K. M. (2004). Bayesian factor analysis for mixed ordinal and continuous responses. Political Analysis, 12, 338353CrossRefGoogle Scholar
R Development Core Team. (2010). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0.Google Scholar
Rabe-Hesketh, S., & Skrondal, A. (2008). Multilevel and longitudinal modeling using Stata, College Station: STATA press.Google Scholar
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 136CrossRefGoogle Scholar
Rowe, D. B. (2001). A model for Bayesian factor analysis with jointly distributed means and loadings. Social Science Working Paper, 1108, 1–16.Google Scholar
Savitsky, T. D., & McCaffrey, D. F. (2014). Bayesian hierarchical multivariate formulation with factor analysis for nested ordinal data. Psychometrika, 79, 275302CrossRefGoogle ScholarPubMed
Scheines, R., & Hoijtink, H., & Boomsma, A. (1999). Bayesian estimation and testing of structural equation models. Psychometrika, 64, 3752CrossRefGoogle Scholar
Schervish, M. J. (1995). Theory of statistics, New York: SpringerCrossRefGoogle Scholar
Stephens, M. (2000). Dealing with label switching in mixture models. Journal of the Royal Statistical Society, Series B, 62, 795809CrossRefGoogle Scholar
Tanaka, K. (2013). A Bayesian multidimensional scaling model for partial rank preference data. Ph.D. thesis, Columbia University.Google Scholar
Vermunt, J. K., & Magidson, J. (2005). Technical guide for Latent GOLD 4.0: Basic and advanced, Belmont: Statistical Innovations Inc..Google Scholar