Hostname: page-component-5f745c7db-2kk5n Total loading time: 0 Render date: 2025-01-06T21:48:32.107Z Has data issue: true hasContentIssue false

Decompositions and Biplots in Three-Way Correspondence Analysis

Published online by Cambridge University Press:  01 January 2025

André Carlier
Affiliation:
Laboratoire de Statistique et Probabilités, Université Paul Sabatier, Toulouse, France
Pieter M. Kroonenberg*
Affiliation:
Department of Education, Leiden University, Leiden, The Netherlands
*
Requests for reprints should be sent to P. M. Kroonenberg, Department of Education, Wassenaarseweg 52, 2333 AK Leiden, THE NETHERLANDS.

Abstract

In this paper correspondence analysis for three-way contingency tables is presented using three-way generalisations of the singular value decomposition. It is shown that in combination with Lancaster's (1951) additive decomposition of interactions in three-way tables, a detailed analysis is possible of the deviations from independence. Finally, biplots are shown to produce powerful graphical representations of the results from three-way correspondence analyses. An example from child development is used to illustrate the theoretical developments.

Type
Original Paper
Copyright
Copyright © 1996 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becker, R. A., Chambers, J. M., Wilks, A. R. (1988). The new S language. A programming environment for data analysis and graphics, Pacific Grove, CA: Wadsworth.Google Scholar
Benzécri, J. P. (1970). L'Analyse des données [Data analysis], Paris: Dunod.Google Scholar
Bradu, D., Gabriel, K. R. (1978). The biplot as a diagnostic tool for models of two-way tables. Technometrics, 20, 4768.CrossRefGoogle Scholar
Carlier, A., Kroonenberg, P. M. (1995). Biplots and decompositions in two-way and three-way correspondence analyis, Toulouse, France: Université Paul Sabatier, Laboratoire de Statistique et Probabilités.Google Scholar
Calier, A., & Kroonenberg, P. M. (in press). Three-way correspondence analysis. The case of the French cantons. In Blasius, J. and Greenacre, M. J. (Eds.), Visualization of categorical data. London: Academic Press.Google Scholar
Carroll, J. D., Chang, J.-J. (1970). Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika, 35, 283319.CrossRefGoogle Scholar
Choulakian, V. (1988). Analyse factorielle des correspondances de tableaux multiples [Correspondence analysis of multiway tables]. Revue de Statistiques Appliquées, 36(4), 3342.Google Scholar
Choulakian, V. (1988). Exploratory analysis of contingency tables by loglinear formulations and generalizations of correspondence analysis. Psychometrika, 53, 235250.CrossRefGoogle Scholar
Cox, C., Gabriel, K. R. (1982). Some comparisons of biplot display and pencil-and-paper E.D.A. methods. In Launer, R. L., Siegel, A. F. (Eds.), Modern data analysis (pp. 4582). London: Academic Press.CrossRefGoogle Scholar
Darroch, J. N. (1974). Multiplicative and additive interaction in contingency tables. Biometrika, 61, 207214.CrossRefGoogle Scholar
de Leeuw, J. (1983). Models and methods for the analysis of correlation coefficients. Journal of Econometrics, 22, 113138.CrossRefGoogle Scholar
Dequier, A. (1973). Contribution à l'étude des tables de contingence entre trois caractères [A contribution to the study of three-way contingency tables], Paris: Université de Paris VI.Google Scholar
Franc, A. (1992). Étude algebrique des multitableaux: Apports de l'algèbre tensorielle [Algebraic study of multiway tables: Contributions of tensor algebra], France: Université Montpellier II.Google Scholar
Gabriel, K. R. (1971). The biplot graphic display with application to principal component analysis. Biometrika, 58, 453467.CrossRefGoogle Scholar
Gabriel, K. G., Odoroff, C. L. (1990). Biplots in biomedical research. Statistics in Medicine, 9, 469485.CrossRefGoogle ScholarPubMed
Greenacre, M. J. (1984). Theory and applications of correspondence analysis, London: Academic Press.Google Scholar
Greenacre, M. J. (1993). Biplots in correspondence analysis. Journal of Applied Statistics, 20, 251269.CrossRefGoogle Scholar
Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and contributions for an “explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics, 16, 184.Google Scholar
Harshman, R. A., Lundy, M. E. (1984). The PARAFAC model for three-way factor analysis and multidimensional scaling. In Law, H. G., Synder, C. W. Jr., McDonald, R. P., Hattie, J. (Eds.), Research methods in multimode dat analysis (pp. 122214). New York: Praeger.Google Scholar
Kiers, H. A. L., Krijnen, W. P. (1991). An efficient algorithm for PARAFAC of three-way data with large numbers of observation units. Psychometrika, 56, 147152.CrossRefGoogle Scholar
Kroonenberg, P. M. (1983). Three-mode principal component analysis: Theory and applications, Leiden: DSWO Press.Google Scholar
Kroonenberg, P. M. (1989). Singular value decompositions of interactions in three-way contingency tables. In Coppi, R., Bolasco, S. (Eds.), Multiway data analysis (pp. 169184). Amsterdam: North Holland.Google Scholar
Lancaster, H. O. (1951). Complex contingency tables treated by the partition of the chi-square. Journal of Royal Statistical Society, Series B, 13, 242249.CrossRefGoogle Scholar
Lancaster, H. O. (1960). On tests of independence in several dimensions. Journal of the Australian Mathematical Society, 1, 241254.CrossRefGoogle Scholar
Lancaster, H. O. (1980). Orthogonal models for contingency tables. In Krishnaiah, P. R. (Eds.), Developments in statistics (Vol. 3), New York: Academic Press.Google Scholar
Lebart, L., Morineau, A., Warwick, K. M. (1984). Multivariate descriptive statistical analysis: Correspondence analysis and related techniques for large matrices, New York: Wiley.Google Scholar
Streitberg, B. (1990). Lancaster interactions revisited. Annals of Statistics, 18, 18781885.CrossRefGoogle Scholar
ten Berge, J. M. F., de Leeuw, J., Kroonenberg, P. M. (1987). Some additional results on principal components analysis of three-mode data by means of alternating least squares algorithms. Psychometrika, 52, 183191.CrossRefGoogle Scholar
Tucker, L. G. (1966). Intra-individual and inter-individual multidemsionality. In Gulliksen, H., Messick, S. (Eds.), Psychometric Scaling: Theory and Applications, New York: Wiley.Google Scholar
Tucker, L. R. (1960). Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 279311.CrossRefGoogle Scholar
van den Boom, D. C. (1988). Neonatal irritability and the development of attachment: Observation and intervention. Unpublished doctoral dissertation, Leiden University.Google Scholar
van den Boom, D. C., Hoeksma, J. B. (1994). The effect on infant irritability on mother-infant interaction: A growth-curve analysis. Developmental Psychology, 30, 581590.CrossRefGoogle Scholar
van der Heijden, P. G. M. (1987). Correspondence analysis of longitudinal categorical data, Leiden: DSWO Press.Google Scholar
van der Heijden, P. G. M., De Falguerolles, A., de Leeuw, J. (1989). A combined approach to contingency table analysis and log-linear analysis (with discussion). Applied Statistics, 38, 249292.CrossRefGoogle Scholar
Yoshizawa, T. (1975). Models for quantification techniques in multiple contingency tables—the theoretical approach. Koudoukeiryougaku [Japanese Journal of Behaviormetrics], 3, 111. (in Japanese)Google Scholar
Yoshizawa, T. (1988). Singular value decomposition of multiarray data and its applications. In Hayashi, C., Diday, E., Jambu, M., Ohsumi, N. (Eds.), Recent developments in clustering and data analysis (pp. 24257). New York: Academic Press.Google Scholar