Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-07T16:21:57.011Z Has data issue: false hasContentIssue false

Describing the Elephant: Structure and Function in Multivariate Data

Published online by Cambridge University Press:  01 January 2025

Abstract

There is a unity underlying the diversity of models for the analysis of multivariate data. Essentially, they constitute a family models, most generally nonlinear, for structural/functional relations between variables drawn from a behavior domain.

Type
Original Paper
Copyright
Copyright © 1986 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. W. (1958). An introduction to multivariate statistical analysis, New York: Wiley.Google Scholar
Anderson, T. W. (1959). Some scaling models and estimation procedures in the latent class model. In Grenander, U. (Eds.), Probability and statistics: The Harold Cramer volume, New York: Wiley.Google Scholar
Anderson, T. W., Rubin, H. (1956). Statistical inference in factor analysis. Proceedings of the third Berkeley Symposium on mathematical statistics and probability, 5, 111150.Google Scholar
Bartholomew, D. J. (1980). Factor analysis for categorical data. Journal of the Royal Statistical Society, 42, 293321.CrossRefGoogle Scholar
Bartholomew, D. J. (1981). Posterior analysis of the factor model. British Journal of Mathematical and Statistical Psychology, 34, 9399.CrossRefGoogle Scholar
Bartholomew, D. J. (1984). The foundations of factor analysis. Biometrika, 71, 221232.CrossRefGoogle Scholar
Bartholomew, D. J. (1985). Foundations of factor analysis: Some practical implications. British Journal of mathematical and statistical Psychology, 38, 110.CrossRefGoogle Scholar
Bartholomew, D. J., & McDonald, R. P. (in press). Foundations of factor analysis: A further comment. British Journal of mathematical and statistical Psychology.Google Scholar
Bentler, P. M. (1968). Alpha-maximized factor analysis (alpha max); its relation to alpha and canonical factor analysis. Psychometrika, 33, 335345.CrossRefGoogle Scholar
Bentler, P. M. (1983). Some contributions to efficient statistics in structural models: Specification and estimation of moment structures. Psychometrika, 48, 493517.CrossRefGoogle Scholar
Bentler, P. M., Lee, S.-Y. (1975). Some extensions of matrix calculus. General Systems, 20, 145150.Google Scholar
Bentler, P. M., Lee, S.-Y. (1978). Matrix derivatives with chain rule and rules for simple Hadamard and Kronecker products. Journal of Mathematical Psychology, 17, 255262.CrossRefGoogle Scholar
Bentler, P. M., Weeks, D. G. (1980). Linear structural equations with latent variables. Psychometrika, 45, 289308.CrossRefGoogle Scholar
Bentler, P. M., Weeks, D. G. (1985). Some comments on structural equation models. British Journal of Mathematical and Statistical Psychology, 38, 120121.CrossRefGoogle Scholar
Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 2951.CrossRefGoogle Scholar
Browne, M. W. (1974). Generalized least squares estimators in the analysis of covariance structures. South African statistical Journal, 8, 124.Google Scholar
Browne, M. W. (1977). The analysis of patterned correlation matrices by generalized least squares. British Journal of mathematical and statistical Psychology, 30, 113124.CrossRefGoogle Scholar
Browne, M. W. (1980). Factor analysis of multiple batteries by maximum likelihood. British Journal of Mathematical and Statistical Psychology, 33, 184199.CrossRefGoogle Scholar
Browne, M. W. (1982). Covariance structures. In Hawkins, D. M. (Eds.), Topics in applied multivariate analysis (pp. 72141). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Browne, M. W. (1984). Asymptotically distribution-free methods in the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 6283.CrossRefGoogle ScholarPubMed
Browne, M. W. (1986). Robustness of statistical inference in factor analysis and related models, Pretoria: University of South Africa, Department of Statistics.Google Scholar
Browne, M. W., Cudeck, R. (1983). Benwee (Version II), A computer programme for path analysis with latent variables (Report 8–46), Pretoria: Human Sciences Research Council.Google Scholar
Carnap, R. (1936). Testability and meaning. Philosophy of Science, 3, 420468.CrossRefGoogle Scholar
Christofferson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 532.CrossRefGoogle Scholar
de Leeuw, J. (1982). Generalized eigenvalue problems with positive semi-definite matrices. Psychometrika, 47, 8793.CrossRefGoogle Scholar
Dwyer, P. S., MacPhail, M. S. (1948). Symbolic matrix derivatives. Annals of Mathematical Statistics, 19, 517534.CrossRefGoogle Scholar
Etezadi-Amoli, J., McDonald, R. P. (1983). A second generation nonlinear factor analysis. Psychometrika, 48, 315342.CrossRefGoogle Scholar
Fraser, C. (1980). COSAN users' guide, Toronto: Department of MECA, The Ontario Institute for Studies in Education.Google Scholar
Fraser, C. (1983). Noharm II: A Fortran program for fitting unidimensional and multidimensional normal ogive models of latent trait theory, Armidale: University of New England, Centre for Behavioural Studies.Google Scholar
Goldstein, H. (1986). Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika, 73, 4356.CrossRefGoogle Scholar
Goldstein, H., & McDonald, R. P. (1986). A general model for the analysis of multilevel data. Unpublished manuscript.Google Scholar
Guttman, L. (1940). Multiple rectilinear prediction and the resolution into components. Psychometrika, 5, 7599.CrossRefGoogle Scholar
Guttman, L. (1941). The quantification of a class of attributes: A theory and method of scale construction. In Horst, P. (Eds.), The prediction of personal adjustment (pp. 319348). New York: Social Science Research Council.Google Scholar
Guttman, L. (1950). The principal components of scale analysis. In Stouffer, S. S. (Eds.), Measurement and prediction, Princeton: Princeton University Press.Google Scholar
Guttman, L. (1953). Image theory for the structure of quantitative variates. Psychometrika, 18, 277296.CrossRefGoogle Scholar
Guttman, L. (1955). The determinacy of factor score matrices with implications for five other basic problems of common factor theory. British Journal of Statistical Psychology, 8, 6582.CrossRefGoogle Scholar
Harris, C. W. (1967). On factors and factor scores. Psychometrika, 32, 353379.CrossRefGoogle Scholar
Hattie, J. (1984). An empirical study of various indices for determining unidimensionality. Multivariate Behavioral Research, 19, 4978.CrossRefGoogle ScholarPubMed
Heise, D. R., Bohrnstedt, G. W. (1970). Validity, invalidity, and reliability. In Borgatta, E. E. (Eds.), Sociological Methodology (pp. 104129). San Francisco: Jossey-Bass.Google Scholar
Hempel, C. G. (1954). A logical appraisal of operationism. Scientific Monthly, 79, 215220.Google Scholar
Jennrich, R. I., Robinson, S. M. (1969). A Newton-Raphson algorithm for maximum likelihood factor analysis. Psychometrika, 34, 111123.CrossRefGoogle Scholar
Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 32, 443482.CrossRefGoogle Scholar
Jöreskog, K. G. (1970). A general method for analysis of covariance structures. Biometrika, 57, 239251.CrossRefGoogle Scholar
Jöreskog, K. G. (1973). A general method for estimating a linear structural equation system. In Goldberger, A. S., Duncan, O. D. (Eds.), Structural equation models in the social sciences, New York: Seminar Press.Google Scholar
Kaiser, H. F., Michael, W. B. (1975). Domain validity and generalizability. Educational and psychological Measurement, 35, 3135.CrossRefGoogle Scholar
Kestelman, H. (1952). The fundamental equation of factor analysis. British Journal of Psychology, Statistical Section, 5, 16.CrossRefGoogle Scholar
Krane, W. R., McDonald, R. P. (1978). Scale-invariant estimators in common factor analysis and related models. British Journal of mathematical and statistical Psychology, 31, 218228.CrossRefGoogle Scholar
Kruskal, J. B. (1964). Nonmetric multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis. Psychometrika, 29, 127.CrossRefGoogle Scholar
Kruskal, J. B., Shepard, R. N. (1974). A nonmetric variety of linear factor analysis. Psychometrika, 39, 123157.CrossRefGoogle Scholar
Lazarsfeld, P. F. (1950). The logical and mathematical foundations of latent structure analysis. In Stouffer, S. S. (Eds.), Measurement and prediction (pp. 362412). Princeton: Princeton University Press.Google Scholar
Lord, F. M., Novick, M. R. (1968). Statistical theories of mental test scores, Reading, Mass: Addison-Wesley.Google Scholar
Martin, J. K., McDonald, R. P. (1975). Bayesian estimation in unrestricted factor analysis: A treatment for Heywood cases. Psychometrika, 40, 505517.CrossRefGoogle Scholar
McArdle, J. J., McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234251.CrossRefGoogle ScholarPubMed
McDonald, R. P. (1962). Note on the derivation of the general latent class model. Psychometrika, 27, 203206.CrossRefGoogle Scholar
McDonald, R. P. (1962). A general approach to nonlinear factor analysis. Psychometrika, 27, 397415.CrossRefGoogle Scholar
McDonald, R. P. (1965). Difficulty factors and nonlinear factor analysis. British Journal of Mathematical Statistical Psychology, 18, 1123.CrossRefGoogle Scholar
McDonald, R. P. (1967a). Nonlinear factor analysis. Psychometric Monograph No. 15, 32(4, Pt. 2).Google Scholar
McDonald, R. P. (1967). Numerical methods for polynomial models in nonlinear factor analysis. Psychometrika, 32, 77112.CrossRefGoogle Scholar
McDonald, R. P. (1967). Some IBM 7090-94 programs for nonlinear factor analysis. Behavioral Science, 12, 7274.Google Scholar
McDonald, R. P. (1967). PROTEAN—A comprehensive CD 3200/3600 program for nonlinear factor analysis, Princeton: NJ Educational Testing Service.Google Scholar
McDonald, R. P. (1967). Factor interaction in nonlinear factor analysis. British Journal of Mathematical and Statistical Psychology, 20, 205215.CrossRefGoogle ScholarPubMed
McDonald, R. P. (1968). A CD 3200/3600 program for nonlinear factor analysis. Behavioral Science, 13, 513515.Google Scholar
McDonald, R. P. (1968). A unified treatment of the weighting problem. Psychometrika, 33, 351381.CrossRefGoogle ScholarPubMed
McDonald, R. P. (1969). A generalized common factor analysis based on residual covariance matrices of prescribed structure. British Journal of Mathematical and Statistical Psychology, 22, 149163.CrossRefGoogle Scholar
McDonald, R. P. (1969). The common factor analysis of multicategory data. British Journal of Mathematical and Statistical Psychology, 22, 165175.CrossRefGoogle Scholar
McDonald, R. P. (1970). Three common factor models for groups of variables. Psychometrika, 35, 111128.CrossRefGoogle Scholar
McDonald, R. P. (1970). The theoretical foundations of common factor analysis, principal factor analysis and alpha factor analysis. British Journal of Mathematical and Statistical Psychology, 23, 121.CrossRefGoogle Scholar
McDonald, R. P. (1972, March). Newton-Raphson methods in unrestricted factor analysis. Paper presented at Psychometric Society Conference, Princeton.Google Scholar
McDonald, R. P. (1974). The measurement of factor indeterminacy. Psychometrika, 39, 203222.CrossRefGoogle Scholar
McDonald, R. P. (1974). Testing pattern hypotheses for covariance matrices. Psychometrika, 39, 189201.CrossRefGoogle Scholar
McDonald, R. P. (1975). Descriptive axioms for common factor theory, image theory, and component theory. Psychometrika, 40, 137152.CrossRefGoogle Scholar
McDonald, R. P. (1975). Testing pattern hypotheses for correlation matrices. Psychometrika, 40, 253255.CrossRefGoogle Scholar
McDonald, R. P. (1976). A note on monotone polygons fitted to bivariate data. Psychometrika, 41, 543546.CrossRefGoogle Scholar
McDonald, R. P. (1976). The McDonald-Swaminathan calculus: Clarifications, extensions and illustrations. General Systems, 21, 8794.Google Scholar
McDonald, R. P. (1977). The indeterminacy of components and the definition of common factors. British Journal of Mathematical and Statistical Psychology, 30, 165176.CrossRefGoogle Scholar
McDonald, R. P. (1978). A simple comprehensive model for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 31, 5972.CrossRefGoogle Scholar
McDonald, R. P. (1978). Generalizability in factorable domains: Domain validity and generalizability. Educational and Psychological Measurement, 38, 7579.CrossRefGoogle Scholar
McDonald, R. P. (1978c, October). A simple procedure for estimating ordered parameters, with applications to scaling. Paper presented at N.E.R.A. Conference.Google Scholar
McDonald, R. P. (1979). The structure of multivariate data: A sketch of a general theory. Multivariate Behavioral Research, 14, 2138.CrossRefGoogle Scholar
McDonald, R. P. (1979). The simultaneous estimation of factor loadings and scores. British Journal of Mathematical and Statistical Psychology, 32, 212228.CrossRefGoogle Scholar
McDonald, R. P. (1980). A simple comprehensive model for the analysis of covariance structures: Some remarks on applications. British Journal of Mathematical and Statistical Psychology, 33, 161183.CrossRefGoogle Scholar
McDonald, R. P. (1981). The dimensionality of tests and items. British Journal of Mathematical and Statistical Psychology, 34, 100117.CrossRefGoogle Scholar
McDonald, R. P. (1982). Linear versus nonlinear models in item response theory. Applied Psychological Measurement, 6, 379396.CrossRefGoogle Scholar
McDonald, R. P. (1982). A note on the investigation of local and global identifiability. Psychometrika, 47, 101103.CrossRefGoogle Scholar
McDonald, R. P. (1982c). Some alternative approaches to the improvement of measurement in education and psychology: Fitting latent trait models. In Spearritt, D. (Ed.), The improvement of measurement in education and psychology (pp. 213237). Burwood Australian Council for Educational Research.Google Scholar
McDonald, R. P. (1982d, July). Unidimensional and multidimensional models for item response theory. Paper presented at IRT/CAT conference, Minneapolis, MN.Google Scholar
McDonald, R. P. (1983). Exploratory and confirmatory nonlinear factor analysis. In Wainer, H., Messick, S. (Eds.), Principals of modern psychological measurement: festschrift for Frederic M. Lord (pp. 197213). Hillsdale, NJ: Erlbaum.Google Scholar
McDonald, R. P. (1983). Alternative weights and invariant parameters in optimal scaling. Psychometrika, 48, 377391.CrossRefGoogle Scholar
McDonald, R. P. (1984). Confirmatory models for nonlinear structural analysis. Data analysis and informatics, III. Diday, E. et al. (Eds.). Elsevier Science Publishers.Google Scholar
McDonald, R. P. (1984b). Testing certain allometric hypotheses by “confirmatory factor analysis”. A private communication to the Fasrafarians. (Fasrafarians are members of the conference on functional and structural relations and factor analysis, Dundee, 1983.)Google Scholar
McDonald, R. P. (1985). The invariant factors model for multimode data. In Law, H. G., Snyder, C. W., Hattie, J. A., McDonald, R. P. (Eds.), Multimode Data Analysis (pp. 285307). New York: Praeger.Google Scholar
McDonald, R. P. (1985). Factor analysis and related methods, Hillsdale: NJ: Erlbaum.Google Scholar
McDonald, R. P. (1985). Comments on D. J. Bartholomew, Foundations of Factor analysis: Some practical implications. British Journal of Mathematical and Statistical Psychology, 38, 134137.CrossRefGoogle Scholar
McDonald, R. P. (1985d, June). A study of a pathological case in factor analysis. Paper presented at Psychometric Society conference, Nashville.Google Scholar
McDonald, R. P. (1985e, July). Heywood cases of the first and second kind. Paper read at Fourth European meeting of the Psychometric Society, Cambridge.Google Scholar
McDonald, R. P. (1986). A survey of some studies in methods for the structural analysis of multivariate data in the social sciences. Interchange, 17, 2540.CrossRefGoogle Scholar
McDonald, R. P., Ahlawat, K. (1974). Difficulty factors in binary data. British Journal of Mathematical and Statistical Psychology, 27, 8299.CrossRefGoogle Scholar
McDonald, R. P., Burr, E. J. (1967). A comparison of four methods of constructing factor scores. Psychometrika, 32, 381401.CrossRefGoogle Scholar
McDonald, R. P., Ishizuka, T., & Nishisato, S. (1977, June). Weighting multicategory data to fit the common factor model. Paper presented at Psychometric Society Conference, Chapel Hill, NC.Google Scholar
McDonald, R. P., Krane, W. R. (1978). Scale-invariant estimators in common factor analysis and related models. British Journal of Mathematical and Statistical Psychology, 31, 218228.Google Scholar
McDonald, R. P., Krane, W. R. (1979). A Monte Carlo study of local identifiability and degrees of freedom in the asymptotic likelihood ratio test. British Journal of Mathematical and Statistical Psychology, 32, 121132.CrossRefGoogle Scholar
McDonald, R. P., Mulaik, S. A. (1979). Determinacy of common factors: A non-technical review. Psychological Bulletin, 86, 297306.CrossRefGoogle Scholar
McDonald, R. P., & Swaminathan, H. (1972). The structural analysis of dispersion matrices based on a very general model with a rapidly convergent procedure for the estimation of parameters. (An informal publication of the Department of Measurement and Evaluation, The Ontario Institute for Studies in Education, 216 pp.)Google Scholar
McDonald, R. P., Swaminathan, H. (1973). A simple matrix calculus with applications to multivariate analysis. General Systems, 18, 3754.Google Scholar
McDonald, R. P., Torii, Y., Nishisato, S. (1979). Some results on proper eigenvalues and eigenvectors with applications to scaling. Psychometrika, 44, 211227.CrossRefGoogle Scholar
Miller, C. R., Sabagh, G., Dingman, H. F. (1962). Latent class analysis and differential mortality. Journal of the American Statistical Association, 57, 430438.CrossRefGoogle Scholar
Mooijart, A. (1982). Factor analysis for non-normal variables, Los Angeles: UCLA, Department of Psychology.Google Scholar
Mooijart, A. (1985). Factor analysis for non-normal variables. Psychometrika, 50, 323342.CrossRefGoogle Scholar
Mulaik, S. A. (1972). The foundations of factor analysis, New York: McGraw Hill.Google Scholar
Mulaik, S. A., McDonald, R. P. (1978). The effect of additional variables on factor indeterminacy. Psychometrika, 43, 177192.CrossRefGoogle Scholar
Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551560.CrossRefGoogle Scholar
Nel, D. G. (1980). On matrix differentiation in statistics. South African Statistical Journal, 14, 137193.Google Scholar
Neudecker, H. (1969). Some theorems on matrix differentiation with special reference to Kronecker matrix products. Journal of the American Statistical Association, 64, 953963.CrossRefGoogle Scholar
Neyman, J., Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrika, 16, 132.CrossRefGoogle Scholar
Novick, M. R., Lewis, C. (1967). Coefficient alpha and the reliability of composite measurements. Psychometrika, 32, 113.CrossRefGoogle ScholarPubMed
Roff, M. (1936). Some properties of the communalities in multiple factor theory. Psychometrika, 1(2), 16.CrossRefGoogle Scholar
Schönemann, P. H. (1971). The minimum average correlation between equivalent sets of uncorrelated factors. Psychometrika, 36, 2130.CrossRefGoogle Scholar
Schönemann, P. H., Wang, Ming-Mei (1972). Some new results on factor indeterminacy. Psychometrika, 37, 6191.CrossRefGoogle Scholar
Shapiro, A., Browne, M. W. (1983). On the investigation of local identifiability: A counterexample. Psychometrika, 48, 303304.CrossRefGoogle Scholar
Swaminathan, H. (1976). Matrix calculus for functions of partitioned matrices. General Systems, 21, 9599.Google Scholar
Takane, Y., Young, F. W., de Leeuw, J. (1979). Nonmetric common factor analysis: An alternating least squares method with optimal scaling features. Behaviormetrika, 6, 4556.CrossRefGoogle Scholar
Tracey, D. S., Dwyer, P. S. (1969). Multivariate maxima and minima with matrix derivatives. Journal of the American Statistical Association, 64, 1576–94.CrossRefGoogle Scholar
Trahan, M. (1974). An investigation of multicategory data factor analysis. Unpublished doctoral dissertation, University of Toronto.Google Scholar
Van Driel, O. P. (1978). On various causes of improper solutions in maximum likelihood factor analysis. Psychometrika, 43, 225243.CrossRefGoogle Scholar
Whittle, P. (1952). On principal components and least square methods of factor analysis. Skandinavisk Aktuarie Tidskrift, 35, 223239.Google Scholar
Williams, J. S. (1978). A definition for the common-factor analysis model and the elimination of problems of factor score indeterminacy. Psychometrika, 43, 293306.CrossRefGoogle Scholar