Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-06T04:06:19.777Z Has data issue: false hasContentIssue false

A Direct Solution for Pairwise Rotations in Kaiser's Varimax Method

Published online by Cambridge University Press:  01 January 2025

Klaas Nevels*
Affiliation:
University of Groningen
*
Requests for reprints should be sent to Klaas Nevels, Subfaculteit der Psychologie, Rijksuniversiteit, Grote Markt 31/32, 9712 HV Groningen, THE NETHERLANDS.

Abstract

The present note contains a completing-the-squares type approach to the varimax rotation problem. This approach yields a direct proof of global optimality of a solution for optimal rotation in a plane. Because varimax rotation can be interpreted as diagonalization of a set of symmetric matrices, the present solution also applies to the diagonalization problem.

Type
Notes and Comments
Copyright
Copyright © 1986 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author is obliged to Jos M. F. ten Berge for helpful comments.

References

de Leeuw, J. (1974). An initial estimate for Indscal, Murray Hill, NJ.: Bell Telephone Laboratories.Google Scholar
de Leeuw, J., Pruzansky, S. (1978). A new computational method to fit the weighted Euclidian distance model. Psychometrika, 43, 479490.CrossRefGoogle Scholar
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200.CrossRefGoogle Scholar
Kaiser, H. F. (1959). Computer program for Varimax rotation in factor analysis. Educational and Psychological Measurement, 19, 413420.CrossRefGoogle Scholar
ten Berge, J. M. F. (1984). A joint treatment of Varimax rotation and the problem of diagonalizing, symmetric matrices simultaneously in the least-squares sense. Psychometrika, 49, 347358.CrossRefGoogle Scholar
Young, F. W., Takane, Y., Lewyckyj, R. (1978). Three notes on Alscal. Psychometrika, 43, 433435.CrossRefGoogle Scholar