Hostname: page-component-5f745c7db-8qdnt Total loading time: 0 Render date: 2025-01-06T21:47:14.326Z Has data issue: true hasContentIssue false

Disentangling Relationships in Symptom Networks Using Matrix Permutation Methods

Published online by Cambridge University Press:  01 January 2025

Michael J. Brusco
Affiliation:
Florida State University
Douglas Steinley*
Affiliation:
University of Missouri
Ashley L. Watts
Affiliation:
University of Missouri
*
Correspondence should be made to Douglas Steinley, University of Missouri, Columbia, USA. Email:steinleyd@missouri.edu

Abstract

Common outputs of software programs for network estimation include association matrices containing the edge weights between pairs of symptoms and a plot of the symptom network. Although such outputs are useful, it is sometimes difficult to ascertain structural relationships among symptoms from these types of output alone. We propose that matrix permutation provides a simple, yet effective, approach for clarifying the order relationships among the symptoms based on the edge weights of the network. For directed symptom networks, we use a permutation criterion that has classic applications in electrical circuit theory and economics. This criterion can be used to place symptoms that strongly predict other symptoms at the beginning of the ordering, and symptoms that are strongly predicted by other symptoms at the end. For undirected symptom networks, we recommend a permutation criterion that is based on location theory in the field of operations research. When using this criterion, symptoms with many strong ties tend to be placed centrally in the ordering, whereas weakly-tied symptoms are placed at the ends. The permutation optimization problems are solved using dynamic programming. We also make use of branch-search algorithms for extracting maximum cardinality subsets of symptoms that have perfect structure with respect to a selected criterion. Software for implementing the dynamic programming algorithms is available in MATLAB and R. Two networks from the literature are used to demonstrate the matrix permutation algorithms.

Type
Applications and case Studies
Copyright
Copyright © 2021 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afzali, M. H., Sunderland, M., Teesson, M., Carragher, N., Mills, K., & Slade, T. (2017). A network approach to the comorbidity between posttraumatic stress disorder and major depressive disorder: The role of overlapping symptoms. Journal of Affective Disorders, 208, 490496. CrossRefGoogle Scholar
Baker, F. B., & Hubert, L. J. (1977). Applications of combinatorial programming to data analysis: Seriation using asymmetric proximity measures. British Journal of Mathematical and Statistical Psychology, 30, 154164. CrossRefGoogle Scholar
Bekhuis, E., Schoevers, R. A., van Borkulo, C. D., Rosmalen, JGM, & Boschloo, L. (2016). The network structure of major depressive disorder, generalized anxiety disorder and somatic symptomatology. Psychological Medicine, 46, 29892998. CrossRefGoogle Scholar
Blin, J. M., & Whinston, A. B. (1974). A note on majority rule under transitivity constraints. Management Science, 20, 14391440. CrossRefGoogle Scholar
Borsboom, D., & Cramer, A. O. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91121. CrossRefGoogle Scholar
Bowman, V. J., & Colantoni, C. S. (1973). Majority rule under transitivity constraints. Management Science, 19, 10291041. CrossRefGoogle Scholar
Briganti, G., Kempenaers, C., Braun, S., Fried, E. I., & Linkowski, P. (2018). Network analysis of empathy items from the interpersonal reactivity index in 1973 young adults. Psychiatry Research, 265, 8792. CrossRefGoogle ScholarPubMed
Brusco, M. J. (2001). Seriation of asymmetric proximity matrices using integer linear programming. British Journal of Mathematical and Statistical Psychology, 54, 367375. CrossRefGoogle ScholarPubMed
Brusco, M. J. (2002). A branch-and-bound algorithm for fitting anti-Robinson structures to symmetric dissimilarity matrices. Psychometrika, 67, 459471. CrossRefGoogle Scholar
Brusco, M. J. (2002). Identifying a reordering of the rows and columns of multiple proximity matrices using multiobjective programming. Journal of Mathematical Psychology, 46, 731745. CrossRefGoogle Scholar
Brusco, M. J. (2004). On the concordance among empirical confusion matrices of visual and tactual letter recognition. Perception & Psychophysics, 66, 392397. CrossRefGoogle ScholarPubMed
Brusco, M. J. (2004). Optimal solution methods for the minimum-backtracking row layout problem. IIE Transactions, 36, 181189. CrossRefGoogle Scholar
Brusco, M. J., Köhn, H. -F., & Stahl, S. (2008). Heuristic implementation of dynamic programming for matrix permutation problems in combinatorial data analysis. Psychometrika, 73, 503522. CrossRefGoogle Scholar
Brusco, M. J., & Stahl, S. (2000). Using quadratic assignment methods to generate initial permutations for least-squares unidimensional scaling of symmetric proximity matrices. Journal of Classification, 17, 197223. CrossRefGoogle Scholar
Brusco, M. J., & Stahl, S. (2001). An interactive approach to multiobjective combinatorial data analysis. Psychometrika, 66, 524. CrossRefGoogle Scholar
Brusco, M. J., & Stahl, S. (2005a). Branch-and-bound applications in combinatorial data analysis, New York, NY Springer Google Scholar
Brusco, M. J., & Stahl, S. (2005b). Optimal least-squares unidimensional scaling: Improved branch-and-bound procedures and comparison to dynamic programming. Psychometrika, 70, 253270. CrossRefGoogle Scholar
Brusco, M. J., & Stahl, S. (2007). An algorithm for extracting maximum cardinality subsets with perfect dominance or anti-Robinson structures. British Journal of Mathematical and Statistical Psychology, 60, 2 333351. CrossRefGoogle ScholarPubMed
Brusco, M. J., Steinley, D., Hoffman, M., Davis-Stober, C., & Wasserman, S. (2019). On Ising models and algorithms for the construction of symptom networks in psychopathology research. Psychological Methods, 24, 735753. CrossRefGoogle Scholar
Bryant, R. A., Creamer, M., O’Donnell, M., Forbes, D. McFarlane, A. C., Silove, D., & Hadzi-Pavlovic, D. (2017). Acute and chronic posttraumatic stress symptoms in the emergence of posttraumatic stress disorder: A network analysis. JAMA Psychiatry, 74, 135142. CrossRefGoogle ScholarPubMed
Choi, K. W., Batchelder, A. W., Ehlinger, P. P., Safren, S. A., & O’Cleirigh, C. (2017). Applying network analysis to psychological comorbidity and health behavior: Depression, PTSD, and sexual risk in sexual minority men with trauma histories. Journal of Consulting and Clinical Psychology, 85, 11581170. CrossRefGoogle ScholarPubMed
Cramer, A. O., Waldorp, L. J. van der Maas, H. L., & Borsboom, D. (2010a). Comorbidity: A network perspective. Behavioral and Brain Sciences, 33, 137150. CrossRefGoogle ScholarPubMed
Cramer, A. O., Waldorp, L. J., van der Maas, H. L., & Borsboom, D. (2010b). Complex realities require complex theories: Refining and extending the network approach to mental disorders. Behavioral and Brain Sciences, 33, 178193. CrossRefGoogle Scholar
DeCani, J. S. (1969). Maximum likelihood paired comparison ranking by linear programming. Biometrika, 56, 537545. CrossRefGoogle Scholar
DeCani, J. S. (1972). A branch and bound algorithm for maximum likelihood paired comparison ranking by linear programming. Biometrika, 59, 131135. CrossRefGoogle Scholar
Epskamp, S., Cramer, A., Waldorp, L., Schmittmann, V., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48, 118. CrossRefGoogle Scholar
Flueck, J. A., & Korsh, J. F. (1974). A branch search algorithm for maximum likelihood paired comparison ranking. Biometrika, 61, 621626. CrossRefGoogle Scholar
Forbes, M. K., Wright, AGC, Markon, K. E., & Krueger, R. F. (2017). Evidence that psychopathology symptom networks have limited replicability. Journal of Abnormal Psychology, 126, 6 969988. CrossRefGoogle ScholarPubMed
Fried, E. I., van Borkulo, C. D., Cramer, AOJ, Boschloo, L., Schoevers, R. A., & Borsboom, D. (2017). Mental disorders as networks of problems: A review of recent insights. Social Psychiatry and Psychiatric Epidemiology, 52, 110. CrossRefGoogle ScholarPubMed
Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software, Practice & Experience, 21, 11291164. CrossRefGoogle Scholar
Gilmore, P. C. (1962). Optimal and suboptimal algorithms for the quadratic assignment problem. Journal of the Society for Industrial and Applied Mathematics, 10 (2), 305313. CrossRefGoogle Scholar
Grömping, U. (2006). Relative importance for linear regression in R: The package relaimpo. Journal of Statistical Software, 17, 127. CrossRefGoogle Scholar
Grötschel, M., Jünger, M., & Reinelt, G. (1984). A cutting plane algorithm for the linear ordering problem. Operations Research, 32, 11951220. CrossRefGoogle Scholar
Held, M., & Karp, R. M. (1962). A dynamic programming approach to sequencing problems. Journal of the Society for Industrial and Applied Mathematics, 10, 196210. CrossRefGoogle Scholar
Hubert, L. (1974). Some applications of graph theory and related non-metric techniques to problems of approximate seriation: The case of symmetric proximity measures. British Journal of Mathematical and Statistical Psychology, 27, 133153. CrossRefGoogle Scholar
Hubert, L. J. (1976). Seriation using asymmetric proximity measures. British Journal of Mathematical and Statistical Psychology, 29, 3252. CrossRefGoogle Scholar
Hubert, L. (1987). Assignment methods in combinatorial data analysis, New York, NY: Marcel Dekker. Google Scholar
Hubert, L., Arabie, P., & Meulman, J. (2001). Combinatorial data analysis: Optimization by dynamic programming, Philadelphia, PA: Society for Industrial and Applied Mathematics. CrossRefGoogle Scholar
Hubert, L. J., & Golledge, R. G. (1981). Matrix reorganization and dynamic programming: Applications to paired comparisons and unidimensional seriation. Psychometrika, 46, 429441. CrossRefGoogle Scholar
Hubert, L., & Schultz, J. (1976). Quadratic assignment as a general data analysis strategy. British Journal of Mathematical and Statistical Psychology, 29, 190241. CrossRefGoogle Scholar
Jones, P. J., Ma, R., & McNally, R. J. (2019). Bridge centrality: A network approach to understanding comorbidity. Multivariate Behavioral Research, Google ScholarPubMed
Jones, P. J., Mair, P., & McNally, R. J. (2018). Visualizing psychological networks: A tutorial in R. Frontiers in Psychology, CrossRefGoogle ScholarPubMed
Karp, R. M., & Held, M. (1967). Finite-state processes and dynamic programming. SIAM Journal of Applied Mathematics, 15, 693718. CrossRefGoogle Scholar
Kendler, K. S., Aggen, S. H., Flint, J., Borsboom, D., & Fried, E. I. (2018). The centrality of DSM and non-DSM depressive symptoms in Han Chinese women with major depression. Journal of Affective Disorders, 227, 739744. CrossRefGoogle Scholar
Korte, B., & Oberhofer, W. (1971). Triangularizing input-output matrices and the structure of production. European Economic Review, 2, 493522. CrossRefGoogle Scholar
Lawler, E. L. (1963). The quadratic assignment problem. Management Science, 9 (4), 586599. CrossRefGoogle Scholar
Lawler, E. L. (1964). A comment on minimum feedback arc sets. IEEE Transactions on Circuit Theory, 11, 296297. CrossRefGoogle Scholar
Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R., & Waldorp, L. J. et al (2018). An introduction to network psychometrics: Relating Ising models to item response theory models. Multivariate Behavioral Research, 53, 1535. CrossRefGoogle ScholarPubMed
Marsman, M., Maris, G., Bechger, T., & Glas, C. (2015). Bayesian inference for low-rank Ising networks. Scientific Reports, 5 (9050), 17. CrossRefGoogle ScholarPubMed
McNally, R. J. (2016). Can network analysis transform psychopathology?. Behaviour Research and Therapy, 86, 95104. CrossRefGoogle ScholarPubMed
McNally, R. J., Mair, P., Mungo, B. L., & Riemann, B. C. (2017). Co-morbid obsessive-compulsive disorder and depression: A Bayesian network approach. Psychological Medicine, 47, 12041214. CrossRefGoogle ScholarPubMed
McNally, R. J., Robinaugh, D. J., Wu, G. W., Wang, L., Deserno, M. K., & Borsboom, D. (2015). Mental disorders as causal systems: A network approach to posttraumatic stress disorder. Clinical Psychological Science, 3, 836849. CrossRefGoogle Scholar
Meinshausen, N., & Bühlmann, P. (2006). High dimensional graphs and variable selection with the lasso. Annals of Statistics, 34, 14361462. CrossRefGoogle Scholar
Rhemtulla, M., Fried, E. I., Aggen, S. H., Tuerlinckx, F., Kendler, K. S., & Borsboom, D. (2016). Network analysis of substance abuse and dependence symptoms. Drug and Alcohol Dependence, 161, 230237. CrossRefGoogle ScholarPubMed
Robinson, W. S. (1951). A method for chronologically ordering archaeological deposits. American Antiquity, 16, 293301. CrossRefGoogle Scholar
Scutari, M. (2010). http://www.jstatsoft.org/v35/i03/. Learning Bayesian networks with the bnlearn R package. Journal of Statistical Software, 35, 1–22. Retrieved fromCrossRefGoogle Scholar
Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 888905. Google Scholar
Steinley, D., & Hubert, L. (2008). Order-constrained solutions in K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} -means clustering: Even better than being globally optimal. Psychometrika, 73, 647664. CrossRefGoogle Scholar
van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L., Schoevers, R. A., & Waldorp, L. J. (2014a). https://doi.org/10.1038/srep05918. A new method for constructing networks from binary data.Scientific Reports, 4, 5918.Google Scholar
van Borkulo, C. D., Epskamp, S., & Robitzsch, A. (2014b). https://CRAN.Rproject.org/package_IsingFit.IsingFit: Fitting Ising models using the eLasso method. Retrieved fromGoogle Scholar
Younger, D. H. (1963). Minimum feedback arc sets for a directed graph. IEEE Transactions on Circuit Theory, 10, 238245. CrossRefGoogle Scholar