Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-08T16:14:16.814Z Has data issue: false hasContentIssue false

Domain Sampling Formulation of Cluster and Factor Analysis

Published online by Cambridge University Press:  01 January 2025

Robert C. Tryon*
Affiliation:
University of California, Berkeley

Abstract

Domain sampling principles permit formulation of a general method of multidimensional analysis. Cluster and factor analysis methods are special cases stemming from decisions made at different stages of the general method, especially in defining an independent dimension. Key cluster analyses define a dimension as a selection of s variables drawn from the full n set. Centroid, principal axes, and maximum likelihood analyses define it by the n variables (raw or residual, weighted or unweighted); bifactor and second-order analysis, by both types of selection; square root analysis, by one variable. Key cluster methods can be designed to test hypotheses.

Type
Original Paper
Copyright
Copyright © 1959 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adcock, C. J. Factorial analysis for non-mathematicians, Carlton: Melbourne Univ. Press, 1954.Google Scholar
Burt, C. The distribution and relations of educational abilities, London: King, 1917.Google Scholar
Burt, C. The factors of the mind, New York: Macmillan, 1941.CrossRefGoogle Scholar
Burt, C. Alternative methods of factor analysis and their relations to Pearson's method of principal axes. Brit. J. Psychol., Statist. Sec., 1949, 2, 98121.CrossRefGoogle Scholar
Carroll, J. B. An analytic solution for approximating simple structure in factor analysis. Psychometrika, 1953, 18, 2338.CrossRefGoogle Scholar
Cattell, R. B. Factor analysis, New York: Harper, 1952.Google Scholar
Cohen, J. The factorial structure of WAIS between early adulthood and old age. J. consult. Psychol., 1957, 21, 283290.CrossRefGoogle ScholarPubMed
Fruchter, B. Introduction to factor analysis, New York: Van Nostrand, 1954.Google Scholar
Garnett, J. C. M. On certain independent factors of mental measurements. Proc. Roy. Soc., 1919, 96, 91111.Google Scholar
Guilford, J. T. Psychometric methods (2nd ed.), New York: McGraw-Hill, 1954.Google Scholar
Guttman, L. A new approach to factor analysis: the radex. In Lazarsfeld, P. F. (Eds.), Mathematical thinking in the social sciences, New York: Columbia Univ. Press, 1956.Google Scholar
Holzinger, K. J. A simple method of factor analysis. Psychometrika, 1944, 9, 257262.CrossRefGoogle Scholar
Holzinger, K. J.and Harman, H. Factor analysis, Chicago: Univ. Chicago Press, 1941.Google Scholar
Hotelling, H. Analysis of a complex of statistical variables into principal components. J. educ. Psychol., 1933, 24, 417441.CrossRefGoogle Scholar
Hotelling, H. Simplified calculation of principal components. Psychometrika, 1935, 1, 2735.CrossRefGoogle Scholar
Kaiser, H. F. Solution for the communalities: a preliminary report. Rep. No. 5, AF 41(657)-76, Berkeley: Univ. Calif., 1956.Google Scholar
Kaiser, H. F. Further numerical investigation of the Tryon-Kaiser solution for the communalities. Rep. No. 14, AF 41(657)-76, Berkeley: Univ. Calif., 1957.Google Scholar
Kaiser, H. F. The varimax criterion for analytic rotation in factor analysis. Psychometrika, 1958, 23, 187200.CrossRefGoogle Scholar
Kelley, T. L. Crossroads in the mind of man, Stanford: Stanford Univ. Press, 1928.Google Scholar
Kelley, T. L. Essential traits of mental life, Cambridge: Harvard Univ. Press, 1935.Google Scholar
Lawley, D. N. The estimation of factor loadings by the method of maximum likelihood. Proc. Roy. Soc., Edinburgh, 1940, 60, 6482.CrossRefGoogle Scholar
Lawley, D. N. The maximum likelihood method of estimating factor loadings. In Thomson, G. (Eds.), The factorial analysis of human ability (5th ed.), London: Univ. London Press, 1951.Google Scholar
Lord, F. M. A study of speed factors in tests and academic grades. Psychometrika, 1956, 21, 3150.CrossRefGoogle Scholar
Neuhaus, J. O. and Wrigley, C. The quartimax method: an analytic approach to orthogonal simple structure. Brit. J. statist. Psychol., 1954, 7, 8191.CrossRefGoogle Scholar
Pearson, K. On lines and planes of closest fit to systems of points in space, Phil. Mag., 1901, 6th Ser., 559ff.CrossRefGoogle Scholar
Pinzka, C. and Saunders, D. R. Analytic rotation to simple structure. II. Extension to an oblique solution, Princeton, N. J.: Educ. Test. Serv. Res. Bull., 1954.CrossRefGoogle Scholar
Rao, C. R. Estimation and tests of significance in factor analysis. Psychometrika, 1955, 20, 93111.CrossRefGoogle Scholar
Saunders, D. R. An analytic method for rotation to orthogonal simple structure, Princeton, N. J.: Educ. Test. Serv. Res. Bull., 1953.CrossRefGoogle Scholar
Spearman, C. General intelligence objectively determined and measured. Amer. J. Psychol., 1904, 15, 201293.CrossRefGoogle Scholar
Spearman, C. The abilities of man, London: Macmillan, 1927.Google Scholar
Thomson, G. The factorial analysis of human ability (5th ed.), London: Univ. London Press, 1951.Google Scholar
Thurstone, L. L. The vectors of mind, Chicago: Univ. Chicago Press, 1935.Google Scholar
Thurstone, L. L. A multiple group of factoring the correlation matrix. Psychometrika, 1945, 10, 7378.CrossRefGoogle Scholar
Thurstone, L. L. Multiple-factor analysis, Chicago: Univ. Chicago Press, 1947.Google Scholar
Thurstone, L. L. Note about the multiple group method. Psychometrika, 1949, 14, 4345.CrossRefGoogle ScholarPubMed
Tryon, R. C. A theory of psychological components—an alternative to “mathematical factors.”. Psychol. Rev., 1935, 42, 425454.CrossRefGoogle Scholar
Tryon, R. C. Cluster analysis, Ann Arbor, Mich.: Edwards, 1939.Google Scholar
Tryon, R. C. Identification of social areas from cluster analysis. Univ. Calif. Publ. Psychol., 1955, 8(1), 1100.Google Scholar
Tryon, R. C. Reliability and behavior domain-validity: reformulation and historical critique. Psychol. Bull., 1957, 54, 229249.CrossRefGoogle ScholarPubMed
Tryon, R. C. Communality of a variable: formulation from cluster analysis. Psychometrika, 1957, 22, 241259.CrossRefGoogle Scholar
Tryon, R. C. Cumulative communality cluster analysis. Educ. psychol. Measmt, 1958, 18, 335.CrossRefGoogle Scholar
Tryon, R. C. General dimensions of individual differences: cluster analysis vs. multiple factor analysis. Educ. psychol. Measmt, 1958, 18, 477495.CrossRefGoogle Scholar
Wrigley, C. F. and Neuhaus, J. O. The matching of two sets of factors. Amer. Psychologist, 1955, 10, 418419.Google Scholar
Wrigley, C. F., Cherry, C. N., Lee, M. C., and McQuitty, L. L. Use of the square root method to identify factors in the job performance of aircraft mechanics. Psychol. Monogr., 1956, 71, No. 1 (Whole No. 430).Google Scholar
Wrigley, C. The effect upon the communalities of changing the estimate of the number of factors. Rep. No. 13, AF 41(657)-76, Berkeley: Univ. Calif., 1957.Google Scholar
Wrigley, C. F. An empirical comparison of various methods for estimating communalities. Educ. psychol. Measmt, in press.Google Scholar