Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-07T19:01:21.215Z Has data issue: false hasContentIssue false

Estimating Difficulty from Polytomous Categorical Data

Published online by Cambridge University Press:  01 January 2025

Javier Revuelta*
Affiliation:
Autonoma University of Madrid
*
Requests for reprints should be sent to Javier Revuelta, Department of Social Psychology and Methodology, Autonoma University of Madrid, 28049 Madrid, Spain. E-mail: javier.revuelta@uam.es

Abstract

A comprehensive analysis of difficulty for multiple-choice items requires information at different levels: the test, the items, and the alternatives. This paper introduces a new parameterization of the nominal categories model (NCM) for analyzing difficulty at these three levels. The new parameterization is referred to as the NE–NCM and is statistically equivalent to the NCM. The NE–NCM is applied to a sample of responses from a logical analysis test. The results suggest that the individuals execute a self-terminated response process that is mostly determined by working memory load.

Type
Original Paper
Copyright
Copyright © 2010 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

I would like to thank the editor and three anonymous reviewers for their comments, which contributed to improvements on earlier versions of this paper.

This work was supported by the Comunidad de Madrid (Spain) grant: CCG07-UAM/ESP-1615.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Petrov, B.N., & Csaki, F. (Eds.), The second international symposium on information theory, Budapest: Akadmiai Kiado.Google Scholar
Arendasy, M., & Sommer, M. (2005). The effect of different types of perceptual manipulations on the dimensionality of automatically generated figural matrices. Intelligence, 33, 307324.CrossRefGoogle Scholar
Bechger, T.M., Maris, G., Verstralen, H.H.F.M., & Verhelts, N.D. (2005). The Nedelsky model for multiple-choice items. In van der Ark, L.A., Croon, M.A., Sijtsma, (Eds.), New developments in categorical data analysis for the social and behavioral sciences, Mahwah: Lawrence Erlbaum Associates.Google Scholar
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In Lord, F.M., & Novick, M.R. (Eds.), Statistical theories of mental tests scores, Reading: Addison–Wesley.Google Scholar
Bock, R.D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 2951.CrossRefGoogle Scholar
Bock, R.D. (1975). Multivariate statistical methods in the behavioral sciences, New York: Wiley.Google Scholar
Bock, R.D. (1997). The nominal categories model. In van der Linden, W.J., & Hambleton, R.K. (Eds.), Handbook of modern item response theory, New York: Springer.Google Scholar
Bock, R.D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: application of an EM algorithm. Psychometrika, 46, 443459.CrossRefGoogle Scholar
Carpenter, P.A., Just, M.A., & Shell, P. (1990). What one intelligence test measures: a theoretical account of the processing in the Raven progressive matrices test. Psychological Review, 97(3), 404431.CrossRefGoogle Scholar
Haladyna, T. (2004). Developing and validating multiple-choice test items, (3rd ed.). Mahwah: Lawrence Erlbaum Associates.CrossRefGoogle Scholar
Hambleton, R.K., & Swaminathan, H. (1985). Item response theory: principles and applications, Boston: Kluwer Academic.CrossRefGoogle Scholar
Hutchinson, T.P. (1991). Ability, partial information, guessing: statistical modelling applied to multiple-choice items, Adelaide: Rumsby Scientific Publishing.Google Scholar
Maxwell, S.E., & Delaney, H.D. (1990). Designing experiments and analyzing data, Belmont: Wadsworth.Google Scholar
Maydeu-Olivares, A., & Joe, H. (2006). Limited information goodness–of–fit testing in multidimensional contingency tables. Psychometrika, 71, 713732.CrossRefGoogle Scholar
Mislevy, R.J. (1984). Estimating latent distributions. Psychometrika, 49, 359381.CrossRefGoogle Scholar
Nocedal, J., & Wright, S.J. (2006). Numerical optimization, New York: Springer.Google Scholar
Revuelta, J. (2004). Analysis of distractor difficulty in multiple-choice items. Psychometrika, 69, 217234.CrossRefGoogle Scholar
Revuelta, J. (2005). An item response model for nominal data based on the rising selection ratios criterion. Psychometrika, 70, 305324.CrossRefGoogle Scholar
Revuelta, J. (2008). The generalized logit-linear item response model for binary-designed items. Psychometrika, 73, 385405.CrossRefGoogle Scholar
Revuelta, J. (2009). Identifiability and equivalence of GLLIRM models. Psychometrika, 74, 257272.CrossRefGoogle Scholar
Rothenberg, T. (1971). Identification in parametric models. Econometrica, 39, 577591.CrossRefGoogle Scholar
San Martin, E., del Pino, G., & De Boeck, P. (2006). IRT models for ability-based guessing. Applied Psychological Measurement, 30, 183203.CrossRefGoogle Scholar
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461464.CrossRefGoogle Scholar
Sternberg, R.J. (2000). Handbook of intelligence, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Thissen, D. (1982). Marginal maximum likelihood estimation for the one parameter logistic model. Psychometrika, 47, 175186.CrossRefGoogle Scholar
Thissen, D., Chen, W.H., & Bock, R.D. (2003). Multilog 7.0. Scientific Software International. Lincolnwood, IL.Google Scholar
Thissen, D., & Steinberg, L. (1984). A response model for multiple-choice items. Psychometrika, 49, 501519.CrossRefGoogle Scholar
Thissen, D., & Steinberg, L. (1986). A taxonomy of item response models. Psychometrika, 51, 567577.CrossRefGoogle Scholar
Thissen, D., Steinberg, L., & Fitzpatrick, A.R. (1989). Multiple-choice items: the distractors are also part of the item. Journal of Educational Measurement, 26, 161176.CrossRefGoogle Scholar
Townsend, J.T., & Nozawa, G. (1997). Serial exhaustive models can violate the race model inequality: implications for architecture and capacity. Psychological Review, 104, 595602.CrossRefGoogle Scholar