Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T07:02:19.589Z Has data issue: true hasContentIssue false

Estimation in the Power Law

Published online by Cambridge University Press:  01 January 2025

Hoben Thomas*
Affiliation:
The Pennsylvania State University
*
Requests for reprints should be sent to Hoben Thomas, 513 Moore Building, University Park, PA 16802.

Abstract

Most psychophysicists neglect to consider how error should be characterized in applications of the power law. Failures of the power law to agree with certain theoretical predictions may be due to bias of parameter estimates. A power law with lognormal product structure is proposed and approximately unbiased parameter estimates are given for several common estimation situations.

Type
Original Paper
Copyright
Copyright © 1981 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author thanks Steven F. Arnold for helpful comments.

References

Aitchison, J., & Brown, J. A. C. The lognormal distribution, 1957, New York: Cambridge University Press.Google Scholar
Cross, D. V. Some technical notes on psychophysical scaling. In Moskowitz, H. R., Scharf, B., & Stevens, J. C. (Eds.), Sensation and measurement. Boston: Reidel. 1974, 2336.CrossRefGoogle Scholar
Fagot, R. F. On the psychophysical law and estimation procedures in psychophysical scaling. Psychometrika, 1963, 28, 145160.CrossRefGoogle Scholar
Fagot, R. F. Alternative power laws for ratio scaling. Psychometrika, 1966, 31, 201214.CrossRefGoogle ScholarPubMed
Fechner, G. T. Kollektivmasslehre, 1897, Leipzig: Englemann.Google Scholar
Galton, F. The geometric mean in vital and social statistics. Proceedings of the Royal Society in London, 1879, 29, 365367.Google Scholar
Heien, D. M. A note on log-linear regression. Journal of the American Statistical Association, 1968, 63, 10341038.CrossRefGoogle Scholar
Johnson, N. L., Kotz, S. Continuous univariate distributions, 1970, New York: Houghton Mifflin.Google Scholar
Poulton, E. C. The new psychophysics: Six models for magnitude estimation. Psychological Bulletin, 1968, 69, 119.CrossRefGoogle Scholar
Poulton, E. C. Models for biases in judging sensory magnitude. Psychological Bulletin, 1979, 86, 777803.CrossRefGoogle ScholarPubMed
Rule, S. J. Average exponent from magnitude production. Psychometrika, 1969, 34, 233235.CrossRefGoogle Scholar
Stevens, S. S. The surprising simplicity of sensory metrics. American Psychologist, 1962, 17, 2939.CrossRefGoogle Scholar
Stevens, S. S., & Greenbaum, H. B. Regression effects in psychophysical judgment. Perception and Psychophysics, 1966, 1, 439446.CrossRefGoogle Scholar
Teghtsoonian, R. Range effects in psychophysical scaling and a revision of Stevens' law. American Journal of Psychology, 1973, 86, 327.CrossRefGoogle Scholar