Hostname: page-component-5f745c7db-96s6r Total loading time: 0 Render date: 2025-01-06T22:52:06.004Z Has data issue: true hasContentIssue false

Estimation of Covariance Structure Models with Parameters Subject to Functional Restraints

Published online by Cambridge University Press:  01 January 2025

Sik-Yum Lee*
Affiliation:
The Chinese University of Hong Kong
*
Request for reprints should be sent to Dr. S. Y. Lee, Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong.

Abstract

This paper demonstrates the feasibility of using the penalty function method to estimate parameters that are subject to a set of functional constraints in covariance structure analysis. Both types of inequality and equality constraints are studied. The approaches of maximum likelihood and generalized least squares estimation are considered. A modified Scoring algorithm and a modified Gauss-Newton algorithm are implemented to produce the appropriate constrained estimates. The methodology is illustrated by its applications to Heywood cases in confirmatory factor analysis, quasi-Weiner simplex model, and multitrait-multimethod matrix analysis.

Type
Original Paper
Copyright
Copyright © 1980 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author is indebted to several anonymous reviewers for creative suggestions for improvement of this paper. Computer funding is provided by the Computer Services Centre, The Chinese University of Hong Kong.

References

Reference Note

Lee, S. Y. & Bentler, P. M. Some Asymptotic properties of constrained generalized least squares estimation in covariance structure models. Manuscript submitted for publication, 1979.Google Scholar

References

Aitchison, J. & Silvey, S. C. Maximum likelihood estimation of parameters subject to restraints. Annals of Mathematical Statistics, 1958, 29, 813828.CrossRefGoogle Scholar
Bentler, P. M. Multistructure statistical model applied to factor analysis. Multivariate Behavioral Research, 1976, 11, 325.CrossRefGoogle ScholarPubMed
Bentler, P. M. & Lee, S. Y. Statistical aspects of a three-mode factor analysis model. Psychometrika, 1978, 43, 343352.CrossRefGoogle Scholar
Bilodeau, E. A. Prediction of complex task proficiency by means of component responses. Perception and Motor Skills, 1961, 12, 299306.CrossRefGoogle Scholar
Bock, R. D. & Bargmann, R. E. Analysis of covariance structure. Psychometrika, 1966, 31, 507534.CrossRefGoogle Scholar
Carroll, C. W. The created response surface technique for optimizing nonlinear, restrained systems. Operation Research, 1961, 9, 169184.CrossRefGoogle Scholar
Clarke, M. R. B. A rapidly convergent method for maximum likelihood factor analysis. British Journal of Mathematical and Statistical Psychology, 1970, 23, 4352.CrossRefGoogle Scholar
Fiacco, A. V. & McCormick, G. P. Nonlinear programming: Sequential unconstrained minimization technique, 1968, New York: Wiley.Google Scholar
Guttman, L. A new approach to factor analysis: The radex. In Lazarsfeld, P. F. (Eds.), Mathematical Thinking in the Social Sciences, 1954, New York: Columbia Press.Google Scholar
Harman, H. H. Modern Factor Analysis, 3rd ed., Chicago: University of Chicago Press, 1976.Google Scholar
Jennrich, R. I. & Sampson, P. F. Application of stepwise regression to nonlinear estimation. Technometrics, 1968, 40, 6372.CrossRefGoogle Scholar
Jennrich, R. I. & Robinson, S. M. A Newton-Raphson algorithm for maximum likelihood factor analysis. Psychometrika, 1969, 34, 111123.CrossRefGoogle Scholar
Jöreskog, K. G. Some contributions to maximum likelihood factor analysis. Psychometrika, 1967, 32, 443482.CrossRefGoogle Scholar
Jöreskog, K. G. A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 1969, 34, 183202.CrossRefGoogle Scholar
Jöreskog, K. G. Estimation and testing of simplex models. British Journal of Mathematical and Statistical Psychology, 1970, 23, 121145.CrossRefGoogle Scholar
Jöreskog, K. G. A general method for analysis of covariance structure. Biometrika, 1970, 57, 239251.CrossRefGoogle Scholar
Jöreskog, K. G. & Goldberger, A. S. Factor analysis by generalized least squares. Psychometrika, 1972, 37, 243260.CrossRefGoogle Scholar
Jöreskog, K. G. & Sörbom, D. LISREL IV: Estimation of linear structural equation systems by maximum likelihood method, 1976, Chicago: National Education Resources.Google Scholar
Lawler, E. E. The multitrait-multirater approach to measuring managerial job performance. Journal of Applied Psychology, 1967, 51, 369381.CrossRefGoogle ScholarPubMed
Lee, S. Y. & Jennrich, R. I. A study of algorithms for covariance structure analysis with specific comparisons using factor analysis. Psychometrika, 1979, 43, 99113.CrossRefGoogle Scholar
Luenberger, D. G. Introduction to linear and nonlinear programming, 1973, Reading, Ma: Addison-Wesley.Google Scholar
Martin, J. K. & McDonald, R. P. Bayesian estimation in unrestricted factor analysis: A treatment for Heywood cases. Psychometrika, 1975, 40, 505517.CrossRefGoogle Scholar
Maxwell, E. A. Recent trends in factor analysis. Journal of the Royal Statistical Society, Series A, 1961, 124, 4959.CrossRefGoogle Scholar
McDonald, R. P. A simple comprehensive model for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 1978, 31, 5972.CrossRefGoogle Scholar
Ostrom, T. M. Relationship between affect, behavior, and cognition. Journal of Experimental Social Psychology, 1969, 5, 1230.CrossRefGoogle Scholar
Rao, C. R. Estimation and tests of significance in factor analysis. Psychometrika, 1955, 20, 93111.CrossRefGoogle Scholar
Schmitt, N. Path analysis of multitrait-multimethod matrices. Applied Psychology Measurement, 1978, 2, 157173.CrossRefGoogle Scholar
Silvey, S. D. The Lagrangian multiplier test. Annals of Mathematical Statistics, 1959, 30, 389407.CrossRefGoogle Scholar
van Driel, O. P. On various causes of improper solutions in maximum likelihood factor analysis. Psychometrika, 1978, 43, 225243.CrossRefGoogle Scholar
Wiley, D. E., Schmidt, W. H. & Bramble, W. J. Studies of a class of covariance structure models. Journal of the American Statistical Association, 1973, 68, 317323.CrossRefGoogle Scholar