Hostname: page-component-5f745c7db-2kk5n Total loading time: 0 Render date: 2025-01-06T07:44:03.317Z Has data issue: true hasContentIssue false

Evaluating Predictors of Dispersion: A Comparison of Dominance Analysis and Bayesian Model Averaging

Published online by Cambridge University Press:  01 January 2025

Yiyun Shou*
Affiliation:
The Australian National University
Michael Smithson
Affiliation:
The Australian National University
*
Requests for reprints should be sent to Yiyun Shou, Research School of Psychology, The Australian National University, Canberra, ACT 0200, Australia. E-mail: yiyun.shou@anu.edu.au

Abstract

Conventional measures of predictor importance in linear models are applicable only when the assumption of homoscedasticity is satisfied. Moreover, they cannot be adapted to evaluating predictor importance in models of heteroscedasticity (i.e., dispersion), an issue that seems not to have been systematically addressed in the literature. We compare two suitable approaches, Dominance Analysis (DA) and Bayesian Model Averaging (BMA), for simultaneously evaluating predictor importance in models of location and dispersion. We apply them to the beta general linear model as a test-case, illustrating this with an example using real data. Simulations using several different model structures, sample sizes, and degrees of multicollinearity suggest that both DA and BMA largely agree on the relative importance of predictors of the mean, but differ when ranking predictors of dispersion. The main implication of these findings for researchers is that the choice between DA and BMA is most important when they wish to evaluate the importance of predictors of dispersion.

Type
Original Paper
Copyright
Copyright © 2013 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azen, R., & Budescu, D.V. (2003). The dominance analysis approach for comparing predictors in multiple regression. Psychological Methods, 8, 129148. doi:https://doi.org/10.1037/1082-989X.8.2.129.CrossRefGoogle ScholarPubMed
Azen, R., & Traxel, N. (2009). Using dominance analysis to determine predictor importance in logistic regression. Journal of Educational and Behavioral Statistics, 34, 319347. doi:https://doi.org/10.3102/1076998609332754.CrossRefGoogle Scholar
Berger, J.O., & Pericchi, L.R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109122. doi:https://doi.org/10.1080/01621459.1996.10476668.CrossRefGoogle Scholar
Bollen, K.A., Ray, S., Zavisca, J., & Harden, J. (2012). A comparison of Bayes factor approximation methods including two new methods. Sociological Methods & Research, 41(2), 294324. doi:https://doi.org/10.1177/0049124112452393.CrossRefGoogle Scholar
Budescu, D.V. (1993). Dominance analysis: a new approach to the problem of relative importance of predictors in multiple regression. Psychological Bulletin, 114, 542551. doi:https://doi.org/10.1037/0033-2909.114.3.542.CrossRefGoogle Scholar
Budescu, D.V., & Azen, R. (2004). Beyond global measures of relative importance: some insights from dominance analysis. Organizational Research Methods, 7, 341350. doi:https://doi.org/10.1177/1094428104267049.CrossRefGoogle Scholar
Carroll, R.J. (2003). Variances are not always nuisance parameters. Biometrics, 59(2), 211220. doi:https://doi.org/10.1111/1541-0420.t01-1-00027.CrossRefGoogle Scholar
Chao, Y.-C.E., Zhao, Y., Kupper, L.L., & Nylander-French, L.A. (2008). Quantifying the relative importance of predictors in multiple linear regression analyses for public health studies. Journal of Occupational and Environmental Hygiene, 5, 519. doi:https://doi.org/10.1080/15459620802225481.CrossRefGoogle ScholarPubMed
Chatfield, C. (1995). Model uncertainty, data mining and statistical inference. Journal of the Royal Statistical Society. Series A. Statistics in Society, 158, 419466. Retrieved from http://www.jstor.org/stable/2983440.CrossRefGoogle Scholar
Clyde, M., & George, E.I. (2004). Model uncertainty. Statistical Science, 19, 8194. doi:https://doi.org/10.1214/088342304000000035.CrossRefGoogle Scholar
Cox, D.R., & Snell, E.J. (1989). Analysis of binary data. New York: Chapman and Hall.Google Scholar
Cribari-Neto, F., & Souza, T.C. (2011). Testing inference in variable dispersion beta regressions. Journal of Statistical Computation and Simulation, 1–17. doi:https://doi.org/10.1080/00949655.2011.599033.CrossRefGoogle Scholar
Cribari-Neto, F., & Zeileis, A. (2010). Beta regression in R. Journal of Statistical Software, 34(02), 124. Retrieved from http://www.jstatsoft.org/v34/i02.CrossRefGoogle Scholar
Czado, C., & Raftery, A.E. (2006). Choosing the link function and accounting for link uncertainty in generalized linear models using Bayes factors. Statistical Papers, 47, 419442. doi:https://doi.org/10.1007/s00362-006-0296-9.CrossRefGoogle Scholar
Darlington, R.B. (1968). Multiple regression in psychological research and practice. Psychological Bulletin, 69, 161182. doi:https://doi.org/10.1037/h0025471.CrossRefGoogle ScholarPubMed
Draper, D. (1995). Assessment and propagation of model uncertainty. Journal of the Royal Statistical Society. Series B (Methodological), 57, 4597. Retrieved from http://www.jstor.org/stable/2346087.CrossRefGoogle Scholar
Duchateau, L., & Janssen, P. (2005). Understanding heterogeneity in generalized mixed and frailty models. American Statistician, 59(2), 143146. doi:https://doi.org/10.1198/000313005X43236.CrossRefGoogle Scholar
Eicher, T.S., Papageorgiou, C., & Raftery, A.E. (2011). Default priors and predictive performance in Bayesian model averaging, with application to growth determinants. Journal of Applied Econometrics, 26, 3055. doi:https://doi.org/10.1002/jae.1112.CrossRefGoogle Scholar
Erikson, R.S., Wright, G.C., & McIver, J.P. (1997). Too many variables? A comment on Bartels’ model-averaging proposal. Paper presented at the Political Methodology Conference, Columbus, Ohio. Retrieved from. http://www.stat.wisc.edu/~burgette/.Google Scholar
Evans, M., & Swartz, T. (1995). Methods for approximating integrals in statistics with special emphasis on Bayesian integration problems. Statistical Science, 10, 254272. doi:https://doi.org/10.1214/ss/1177009938.CrossRefGoogle Scholar
Fernández, C., & Ley, E. (2002). Bayesian modeling of catch in a north-west Atlantic fishery. Journal of the Royal Statistical Society. Series C. Applied Statistics, 51, 257280. doi:https://doi.org/10.1111/1467-9876.00268.CrossRefGoogle Scholar
Fernández, C., Ley, E., & Steel, M.F.J. (2001). Benchmark priors for Bayesian model averaging. Journal of Econometrics, 100, 381427. doi:https://doi.org/10.1016/S0304-4076(00)00076-2.CrossRefGoogle Scholar
Fernández, C., & Steel, M.F.J. (1998). On Bayesian modeling of fat tails and skewness. Journal of the American Statistical Association, 93, 359371.Google Scholar
Ferrari, S.L.P., & Cribari-Neto, F. (2004). Beta regression for modeling rates and proportions. Journal of Applied Statistics, 31, 799815. doi:https://doi.org/10.1080/0266476042000214501.CrossRefGoogle Scholar
Field, A.P. (2005). Discovering statistics using SPSS: and sex, drugs and rock ’n’ roll. Thousand Oaks: Sage Publications.Google Scholar
Freckleton, R.P. (2011). Dealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement error. Behavioral Ecology and Sociobiology, 65, 91101. doi:https://doi.org/10.1007/s00265-010-1045-6.CrossRefGoogle Scholar
Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., & Hothorn, T. (2011). mvtnorm: multivariate normal and t distributions (R package Version 0.9-9991). Retrieved from http://CRAN.R-project.org/package=mvtnorm.Google Scholar
George, E.I. (2004). Bayesian model selection. Encyclopedia of statistical sciences.CrossRefGoogle Scholar
Glymour, C., Madigan, D., Pregibon, D., & Smyth, P. (1997). Statistical themes and lessons for data mining. Data Mining and Knowledge Discovery, 1, 1128. doi:https://doi.org/10.1023/A:1009773905005.CrossRefGoogle Scholar
Gravetter, F.J., & Wallnau, L.B. (2006). Statistics for the behavioural sciences (7th ed.). Belmont: Thomson Wadsworth.Google Scholar
Hoeting, J.A., Madigan, D., Volinsky, C.T., & Raftery, A.E. (1999). Bayesian model averaging: a tutorial. Statistical Science, 14, 382401. doi:https://doi.org/10.1214/ss/1009212519.Google Scholar
Hubbard, R., & Lindsay, R.M. (2008). Why p values are not a useful measure of evidence in statistical significance testing. Theory & Psychology, 18, 6988. doi:https://doi.org/10.1177/0959354307086923.CrossRefGoogle Scholar
Jeffreys, H. (1961). The theory of probability (3rd ed.). Oxford: Oxford University Press.Google Scholar
Johnson, J.W., & Lebreton, J.M. (2004). History and use of relative importance indices in organizational research. Organizational Research Methods, 238–257. doi:https://doi.org/10.1177/1094428104266510.CrossRefGoogle Scholar
Kadane, J.B., & Lazar, N.A. (2004). Methods and criteria for model selection. Journal of the American Statistical Association, 99, 279290. doi:https://doi.org/10.1198/016214504000000269.CrossRefGoogle Scholar
Kass, R.E., & Raftery, A.E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773795. doi:https://doi.org/10.1080/01621459.1995.10476572.CrossRefGoogle Scholar
Kieschnick, R., & McCullough, B. (2003). Regression analysis of variates observed on (0,1): percentages, proportions and fractions. Statistical Modeling, 3, 193213. doi:https://doi.org/10.1191/1471082X03st053oa.CrossRefGoogle Scholar
Kosmidis, I., & Firth, D. (2009). Bias reduction in exponential family nonlinear models. Biometrika, 96, 793804. doi:https://doi.org/10.1093/biomet/asp055.CrossRefGoogle Scholar
Kruskal, W., & Majors, R. (1989). Concepts of relative importance in recent scientific literature. American Statistician, 43, 26.CrossRefGoogle Scholar
Kumar, M., Kee, F.T., & Manshor, A.T. (2009). Determining the relative importance of critical factors in delivering service quality of banks: an application of dominance analysis in SERVQUAL model. Managing Service Quality, 19, 211228. doi:https://doi.org/10.1108/09604520910943198.CrossRefGoogle Scholar
Leamer, E.E. (1973). Multicollinearity: a Bayesian interpretation. Review of Economics and Statistics, 55, 371380. Retrieved from http://www.jstor.org/stable/1927962.CrossRefGoogle Scholar
Lebreton, J.M., Binning, J.F., Adorno, A.J., & Melcher, K.M. (2004). Importance of personality and job-specific affect for predicting job attitudes and withdrawal behavior. Organizational Research Methods, 7, 300325. doi:https://doi.org/10.1177/1094428104266015.CrossRefGoogle Scholar
LeBreton, J.M., Ployhart, R.E., & Ladd, R.T. (2004). A Monte Carlo comparison of relative importance methodologies. Organizational Research Methods, 7, 258282. doi:https://doi.org/10.1177/1094428104266017.CrossRefGoogle Scholar
Liang, F., Paulo, R., Molina, G., Clyde, M.A., & Berger, J.O. (2008). Mixtures of g priors for Bayesian variable selection. Journal of the American Statistical Association, 103, 410423. doi:https://doi.org/10.1198/016214507000001337.CrossRefGoogle Scholar
Liu, C.C., & Aitkin, M. (2008). Bayes factors: prior sensitivity and model generalizability. Journal of Mathematical Psychology, 52, 362375. doi:https://doi.org/10.1016/j.jmp.2008.03.002.CrossRefGoogle Scholar
Long, J.S. (1997). Regression models for categorical and limited dependent variables. Thousand Oaks: Sage Publications.Google Scholar
Madigan, D., & Raftery, A.E. (1994). Model selection and accounting for model uncertainty in graphical models using Occam’s window. Journal of the American Statistical Association, 89, 15351546. doi:https://doi.org/10.1080/01621459.1994.10476894.CrossRefGoogle Scholar
McCullagh, P., & Nelder, J.A. (1989). Generalized linear models. New York: Chapman and Hall. doi:https://doi.org/10.1007/978-1-4899-3242-6.CrossRefGoogle Scholar
Menard, S. (2000). Coefficients of determination for multiple logistic regression analysis. American Statistician, 54, 1724.CrossRefGoogle Scholar
Ospina, R., Cribari-Neto, F., & Vasconcellos, K.L.P. (2006). Improved point and interval estimation for a beta regression model. Computational Statistics & Data Analysis, 51, 960981. doi:https://doi.org/10.1016/j.csda.2005.10.002.CrossRefGoogle Scholar
Paciorek, C.J. (2006). Misinformation in the conjugate prior for the linear model with implications for free-knot spline modeling. Bayesian Analysis, 1, 375383. doi:https://doi.org/10.1214/06-BA114.CrossRefGoogle Scholar
Pammer, K., & Kevan, A. (2007). The contribution of visual sensitivity, phonological processing, and nonverbal iq to children’s reading. Scientific Studies of Reading, 11(1), 3353. doi:https://doi.org/10.1080/10888430709336633.CrossRefGoogle Scholar
R Development Core Team (2011). R: a language and environment for statistical computing. Vienna: R Foundation, for Statistical Computing. Available from http://www.R-project.org/.Google Scholar
Raftery, A.E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111163. Retrieved from https://doi.org/http://www.jstor.org/stable/271063.CrossRefGoogle Scholar
Raftery, A.E. (1996). Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika, 83, 251266. doi:https://doi.org/10.1093/biomet/83.2.251.CrossRefGoogle Scholar
Raftery, A.E., Madigan, D., & Hoeting, J.A. (1997). Bayesian model averaging for linear regression models. Journal of the American Statistical Association, 92, 179191. doi:https://doi.org/10.1080/01621459.1997.10473615.CrossRefGoogle Scholar
Raftery, A.E., & Zheng, Y. (2003). Discussion: performance of Bayesian model averaging. Journal of the American Statistical Association, 98, 931938. doi:https://doi.org/10.1198/016214503000000891.CrossRefGoogle Scholar
Retzer, J.J., Soofi, E.S., & Soyer, R. (2009). Information importance of predictors: concept, measures, Bayesian inference, and applications. Computational Statistics & Data Analysis, 53, 23632377. doi:https://doi.org/10.1016/j.csda.2008.03.010.CrossRefGoogle Scholar
Simas, A.B., Barreto-Souza, W., & Rocha, A.V. (2010). Improved estimators for a general class of beta regression models. Computational Statistics & Data Analysis, 54, 348366. doi:https://doi.org/10.1016/j.csda.2009.08.017.CrossRefGoogle Scholar
Smithson, M., & Merkle, E. C. (in press). Generalized linear models for categorical and continuous limited dependent variables. Boca Raton: Chapman and Hall. Chapter 6 Doubly bounded continuous variables.Google Scholar
Smithson, M., & Verkuilen, J. (2006). A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychological Methods, 11, 5471. doi:https://doi.org/https://doi.org/10.1037/1082-989X.11.1.54.CrossRefGoogle ScholarPubMed
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461464. doi:https://doi.org/10.1214/aos/1176344136.CrossRefGoogle Scholar
Tabachnick, B.G., & Fidell, L.S. (2007). Using multivariate statistics (5th ed.). Boston: Pearson Allyn & Bacon.Google Scholar
Venter, A., Maxwell, S.E., Howard, E.A.T., & Steven, D.B. (2000). Issues in the use and application of multiple regression analysis. Handbook of applied multivariate statistics and mathematical modeling, 151182. doi:https://doi.org/10.1016/B978-012691360-6/50007-0.CrossRefGoogle Scholar
Verkuilen, J., & Smithson, M. (2012). Mixed and mixture regression models for continuous bounded responses using the beta distribution. Journal of Educational and Behavioral Statistics.CrossRefGoogle Scholar
Viallefont, V., Raftery, A.E., & Richardson, S. (2001). Variable selection and Bayesian model averaging in case-control studies. Statistics in Medicine, 20, 32153230. doi:https://doi.org/10.1002/sim.976.CrossRefGoogle ScholarPubMed
Volinsky, C.T., & Raftery, A.E. (2000). Bayesian information criterion for censored survival models. Biometrics, 56, 256262. doi:https://doi.org/10.1111/j.0006-341X.2000.00256.x.CrossRefGoogle ScholarPubMed
Wang, D., Zhang, W., & Bakhai, A. (2004). Comparison of Bayesian model averaging and stepwise methods for model selection in logistic regression. Statistics in Medicine, 23, 34513467. doi:https://doi.org/10.1002/sim.1930.CrossRefGoogle ScholarPubMed
Weakliem, D.L. (1999). A critique of the Bayesian information criterion for model selection. Sociological Methods & Research, 27, 359397. doi:https://doi.org/10.1177/0049124199027003002.CrossRefGoogle Scholar
Zellner, A., & Siow, A. (1980). Posterior odds ratios for selected regression hypotheses. Trabajos de Estadística y de Investigación Operativa, 31, 585603. doi:https://doi.org/10.1007/BF02888369.CrossRefGoogle Scholar
Zucchini, W. (2000). An introduction to model selection. Journal of Mathematical Psychology, 44, 4161. doi:https://doi.org/10.1006/jmps.1999.1276.CrossRefGoogle ScholarPubMed