Hostname: page-component-5f745c7db-nzk4m Total loading time: 0 Render date: 2025-01-06T06:47:15.377Z Has data issue: true hasContentIssue false

Explicit Candecomp/Parafac Solutions for a Contrived 2 × 2 × 2 Array of Rank Three

Published online by Cambridge University Press:  01 January 2025

Jos M. F. ten Berge*
Affiliation:
University of Groningen
Henk A. L. Kiers
Affiliation:
University of Groningen
Jan de Leeuw
Affiliation:
University of Leiden
*
Requests for reprints should be sent to Jos M.F. ten Berge, Vakgroep Psychologic, RU Groningen, Grote Markt 32, 9712 HV Groningen, THE NETHERLANDS.

Abstract

Kruskal, Harshman and Lundy have contrived a special 2 × 2 × 2 array to examine formal properties of degenerate Candecomp/Parafac solutions. It is shown that for this array the Candecomp/Parafac loss has an infimum of 1. In addition, the array will be used to challenge the tradition of fitting Indscal and related models by means of the Candecomp/Parafac process.

Type
Notes And Comments
Copyright
Copyright © 1988 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Jan de Leeuw is now at the University of California at Los Angeles.

References

Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via anN-way generalization of “Eckart-Young” decomposition. Psychometrika, 35, 283319.CrossRefGoogle Scholar
Carroll, J. D., & Pruzansky, S. (1984). The CANDECOMP-CANDELINC family of Models and Methods for Multidimensional Data Analysis. In Law, H. G., Snyder, C. W. Jr., Hattie, J. A., & McDonald, R. P. (Eds.), Research methods for multimode data analysis (pp. 372402). New York: Praeger.Google Scholar
Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-mode factor analysis. UCLA Working Papers in Phonetics, 16, 184.Google Scholar
Harshman, R. A., & Lundy, M. E. (1984). The PARAFAC model. In Law, H. G., Snyder, C. W. Jr., Hattie, J. A., & McDonald, R. P. (Eds.), Research methods for multimode data analysis (pp. 122215). New York: Praeger.Google Scholar
Kruskal, J. B. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra and its Applications, 18, 95138.CrossRefGoogle Scholar
Kruskal, J. B., Harshman, R. A., & Lundy, M. E. (1983). Some relationships between Tucker's three-mode factor analysis and PARAFAC/CANDECOMP. Paper presented at the annual meeting of the Psychometric Society, Los Angeles.Google Scholar
Kruskal, J. B., Harshman, R. A., & Lundy, M. E. (1985). Several mathematical relationships between PARAFAC-CANDECOMP and three-mode factor analysis. Paper presented at the annual meeting of the Classification Society, St. John's, Newfoundland.Google Scholar
Schur, J. (1911). Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen [Comments on the theory of bounded bilinear forms with infinite numbers of variables]. Journal für die reine und angewandte Mathematik, 140, 128.CrossRefGoogle Scholar