Hostname: page-component-5f745c7db-6bmsf Total loading time: 0 Render date: 2025-01-06T07:00:21.084Z Has data issue: true hasContentIssue false

Extensions of the Partial Credit Model

Published online by Cambridge University Press:  01 January 2025

C. A. W. Glas*
Affiliation:
National Institute for Educational Measurement (CITO), Arnhem, The Netherlands
N. D. Verhelst
Affiliation:
National Institute for Educational Measurement (CITO), Arnhem, The Netherlands
*
Requests for reprints should be sent to C. A. W. Glas, Cito, PO Box 1034, 6801 MG Arnhem, THE NETHERLANDS.

Abstract

The partial credit model, developed by Masters (1982), is a unidimensional latent trait model for responses scored in two or more ordered categories. In the present paper some extensions of the model are presented. First, a marginal maximum likelihood estimation procedure is developed which allows for incomplete data and linear restrictions on both the item and the population parameters. Secondly, two statistical tests for evaluating model fit are presented: the former test has power against violation of the assumption about the ability distribution, the latter test offers the possibility of identifying specific items that do not fit the model.

Type
Original Paper
Copyright
Copyright © 1989 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors are indepted to professor Wim van der Linden and Huub Verstralen for their helpful comments.

References

Andersen, E. B. (1972). The numerical solution of a set of conditional estimation equations. Journal of the Royal Statistical Society, 34, 4250.CrossRefGoogle Scholar
Andersen, E. B. (1973). Conditional inference and models for measuring, Kopenhagen: Mentalhygienjnisk Forskningsinstitut.Google Scholar
Andersen, E. B. (1977). Sufficient statistics and latent trait models. Psychometrika, 42, 6981.CrossRefGoogle Scholar
Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete multivariate analysis: Theory and practice, Cambridge, MA: M.I.T. Press.Google Scholar
Birch, M. W. (1986). Maximum likelihood in three-way contingency tables. Journal of the Royal Statistical Society, 25, 220233.CrossRefGoogle Scholar
Birch, M. W. (1964). A new proof of the Pearson-Fisher theorem. Annals of Mathematical Statistics, 35, 817824.CrossRefGoogle Scholar
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: An application of an EM algorithm. Psychometrika, 46, 443459.CrossRefGoogle Scholar
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, 39, 138.CrossRefGoogle Scholar
Efron, B., & Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information. Biometrika, 65, 457487.CrossRefGoogle Scholar
Fischer, G. H. (1974). Einführung in die theorie psychologischer tests, Bern: Verlag Hans Huber.Google Scholar
Fischer, G. H. (1981). On the existence and uniqueness of maximum likelihood estimates in the Rasch model. Psychometrika, 46, 5977.CrossRefGoogle Scholar
Glas, C. A. W. (1988). The derivation of some tests for the Rasch model from the multinomial distribution. Psychometrika, 53, 525546.CrossRefGoogle Scholar
Haberman, S. J. (1974). The analysis of frequency data, Chicago: University of Chicago Press.Google Scholar
Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, 44, 226233.CrossRefGoogle Scholar
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149174.CrossRefGoogle Scholar
Masters, G. N. (1985). Comparing latent trait and latent class analysis of Likert type data. Psychometrika, 50, 6982.CrossRefGoogle Scholar
Masters, G. N., & Wright, B. D. (1984). The essential process in a family of measurement models. Psychometrika, 49, 529544.CrossRefGoogle Scholar
Mislevy, R. J. (1984). Estimating latent distributions. Psychometrika, 49, 359381.CrossRefGoogle Scholar
Molenaar, I. W. (1983). Item steps. Heymans Bulletins (Report No. HB-83-630-EX), Groningen: Rijks Universiteit Groningen.Google Scholar
Rao, C. R. (1973). Linear statistical inference and its applications 2nd ed.,, New York: Wiley.CrossRefGoogle Scholar
Rigdon, S. E., & Tsutakawa, R. K. (1983). Parameter estimation in latent trait models. Psychometrika, 48, 567574.CrossRefGoogle Scholar
Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. Psychometrika, 47, 175186.CrossRefGoogle Scholar
Wright, B. D., & Masters, G. N. (1982). Rating scale analysis, Chicago: MESA Press.Google Scholar