Hostname: page-component-5f745c7db-j9pcf Total loading time: 0 Render date: 2025-01-06T06:17:28.471Z Has data issue: true hasContentIssue false

A Family of Association Coefficients for Metric Scales

Published online by Cambridge University Press:  01 January 2025

Frits E. Zegers*
Affiliation:
University of Groningen
Jos M. F. ten Berge
Affiliation:
University of Groningen
*
Requests for reprints should be sent to Frits E. Zegers, University of Groningen, Dept. of Psychology, Grote Markt 31-32, 9712 HV Groningen, The Netherlands.

Abstract

Four types of metric scales are distinguished: the absolute scale, the ratio scale, the difference scale and the interval scale. A general coefficient of association for two variables of the same metric scale type is developed. Some properties of this general coefficient are discussed. It is shown that the matrix containing these coefficients between any number of variables is Gramian. The general coefficient reduces to specific coefficients of association for each of the four metric scales. Two of these coefficients are well known, the product-moment correlation and Tucker's congruence coefficient. Applications of the new coefficients are discussed.

Type
Original Paper
Copyright
Copyright © 1985 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellman, R. (1960). Introduction to matrix analysis, New York: McGraw-Hill.Google Scholar
Browne, M. W. (1977). Generalized least-squares estimators in the analysis of covariance structures. In Aigner, D. J. & Goldberger, A. S. (Eds.), Latent variables in socioeconomic models, Amsterdam: North-Holland.Google Scholar
Burt, C. (1948). The factorial study of temperamental traits. British Journal of Psychology, 1, 178203.Google Scholar
Cohen, J. (1969). rc: A profile similarity coefficient invariant over variable reflection. Psychological Bulletin, 71, 281284.CrossRefGoogle Scholar
Cureton, E. E. (1958). The definition and estimation of test reliability. Educational and Psychological Measurement, 18, 715738.CrossRefGoogle Scholar
Gantmacher, F. R. (1958). Matrizenrechnung (Teil 1), Berlin: VEB Deutscher Verlag der Wissenschaften.Google Scholar
Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53, 315328.CrossRefGoogle Scholar
Janson, S., & Vegelius, J. (1982). Correlation coefficients for more than one scale type. Multivariate Behavioral Research, 17, 271284.CrossRefGoogle ScholarPubMed
Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of measurement (Vol. I), New York: Academic Press.Google Scholar
Kristof, W. (1972). On a statistic arising in testing correlation. Psychometrika, 37, 377384.CrossRefGoogle Scholar
McDonald, R. M. (1982). Linear versus nonlinear models. Applied Psychological Measurement, 6, 379396.CrossRefGoogle Scholar
Mehta, J. S., & Gurland, J. (1969). Some properties and an application of a statistic arising in testing correlation. Annals of Mathematical Statistics, 40, 17361745.CrossRefGoogle Scholar
Nunnally, J. C. (1978). Psychometric Theory, New York: McGraw-Hill.Google Scholar
Pólya, G., & Szegö, G. (1925). Aufgaben und Lehrsätze aus der Analysis (Band 2), Berlin: Springer.Google Scholar
Schur, J. (1911). Bemerkungen zur Theorie der Beschränkten Bilinearformen mit unendlich vielen Veränderlichen. Journal für die reine und angewandte Mathematik, 140, 128.CrossRefGoogle Scholar
Sjöberg, L., & Holley, J. W. (1967). A measure of similarity between individuals when scoring directions are arbitrary. Multivariate Behavioral Research, 2, 377384.CrossRefGoogle ScholarPubMed
Suppes, P., & Zinnes, J. L. (1963). Basic measurement theory. In Luce, R. D., Bush, R. R., & Galanter, E. (Eds.), Handbook of Mathematical Psychology (Vol. II), New York: Wiley.Google Scholar
Tucker, L. R. (1951). A method for synthesis of factor analytic“s” studies, Washington, D. C.: Department of the Army.CrossRefGoogle Scholar
Winer, B. J. (1971). Statistical principles in experimental design, New York: McGraw-Hill.Google Scholar