Hostname: page-component-5f745c7db-96s6r Total loading time: 0 Render date: 2025-01-06T07:00:28.407Z Has data issue: true hasContentIssue false

A “Halo”-Model for Multidimensional Ratio Scaling

Published online by Cambridge University Press:  01 January 2025

H. C. Micko*
Affiliation:
Göttingen University

Abstract

A model for direct multidimensional ratio scaling is presented, based on the concepts “common” and “difference” of the “halos” of two percepts. Measures of halos and their differences are proportional to lengths of corresponding percept vectors and their distance in subjective space. Ekman type scaling judgements are assumed to reflect the ratio measure of the common/measure of the standard's halo. The model is supposed to yield results that are in line with the results of distance models of multidimensional ratio scaling since negative scalar products of percept vectors are admitted.

Type
Original Paper
Copyright
Copyright © 1970 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Now at Phillips University, Marburg/Lahn.

References

Bush, R. R., Mosteller, F.. A model for stimulus generalisation and discrimination. Psychological Review, 1951, 58, 413423.CrossRefGoogle Scholar
Eisler, H. Similarity in the continuum of heaviness with some methodological and theoretical considerations. Scandinavian Journal of Psychology, 1960, 1, 6981.CrossRefGoogle Scholar
Ekman, G. A direct method for multidimensional ratio scaling. Reports of the Psychological Laboratory, The University of Stockholm, 1958, No. 58.Google Scholar
Ekman, G. A direct method for multidimensional ratio scaling. Psychometrika, 1963, 28, 3341.CrossRefGoogle Scholar
Ekman, G. Two methods for the analysis of perceptual dimensionality. Reports of the Psychological Laboratory, The University of Stockholm, 1964, No. 176.Google Scholar
Ekman, G. & Engen, T. Multidimensional ratio scaling and multidimensional similarity in olfactory perception. Reports of the Psychological Laboratory, The University of Stockholm, 1962, No. 126.Google Scholar
Ekman, G., Engen, T., Künnapas, T., & Lindman, R.. A quantitative principle of qualitative similarity. Journal of Experimental Psychology, 1964, 68, 530536.CrossRefGoogle ScholarPubMed
Ekman, G. & Lindman, R. Multidimensional ratio scaling and multidimensional similarity. Reports of the Psychological Laboratory, The University of Stockholm, 1961, No. 103.Google Scholar
Ekman, G., & Sjöberg, L. Scaling. Annual Review of Psychology, 1965, 16, 451474.CrossRefGoogle ScholarPubMed
Estes, W. K. Toward a statistical theory of learning. Psychological Review, 1950, 57, 94107.CrossRefGoogle Scholar
Fagot, R. F. Alternative power laws for ratio scaling. Psychometrika, 1966, 31, 201214.CrossRefGoogle ScholarPubMed
Hays, W. L. An approach to the study of trait implication and trait similarity. In Taguiri, R. & Petrullo, L. Person, Perception and Interpersonal Behavior. Stanford University Press, 1958.Google Scholar
James, W.. The Principles of Psychology, 1890, New York: Henry Holt.Google Scholar
Künnapas, T., Mälhammer, G. & Svenson, O. Multidimensional ratio scaling and multidimensional similarity of simple geometric figures. Reports of the Psychological Laboratory, the University of Stockholm, 1964, No. 166.Google Scholar
Kruskal., J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 1964, 29, 127.CrossRefGoogle Scholar
Kruskal, J. B. Nonmetric multidimensional scaling: A numerical method. Psychometrika, 1964, 29, 115129.CrossRefGoogle Scholar
Micko, H. C. Räumliche Modelle für die mehrdimensionale Skalierung. Bericht über den 25. Kongress der Deutschen Gesellschaft für Psychologie, Münster, 1966, Göttingen, Hogrefe, 1967.Google Scholar
Micko, H. C. Die mehrdimensionale Skalierung von Reizen und prägnanten und diffusen Merkmalen. Paper read at the Symposium on Perception, 1. Conference of psychologists of the countries on the Danube, Bratislava, 1967.Google Scholar
Micko, H. C., & Fischer, G. Spatial models for multidimensional scaling. Journal of Mathematical Psychology, 1970, 7, 843.Google Scholar
Noble, C. E. Psychology and the logic of similarity. Journal of General Psychology, 1957, 57, 2344.CrossRefGoogle ScholarPubMed
Orlik, P. Eine Modellstudie zur Psychophysik des Polaritätsprofils. Zeitschrift für experimentelle und angewandte Psychologie, 1965, 12, 614647.Google Scholar
Restle, F. A metric and an ordering on sets. Psychometrika, 1959, 24, 207220.CrossRefGoogle Scholar
Restle, F. Psychology of Judgment and Choice, 1961, New York: Wiley.Google Scholar
Shepard, R. Similarity of stimuli and metric properties of behavioral data. In Gulliksen, H., Messick, S. (Eds.), Psychological Scaling: Theory and Applications, 1960, New York: Wiley.Google Scholar
Shepard, R. N.. The analysis of proximities: Multidimensional scaling with an unknown distance function. Psychometrika, 1962, 27, 125139.CrossRefGoogle Scholar
Suppes, P., & Zinnes, J. L.. Basic measurement theory. In Luce, R. D., Bush, R. R., & Galanter, E. (Eds.), Handbook of Mathematical Psychology. Vol. 1, 1963, New York: Wiley.Google Scholar
Torgerson, W. S. Theory and Methods of Scaling, 1958, New York: Wiley.Google Scholar
Tucker, L. R., & Messick, S. An individual differences model for multidimensional scaling. Psychometrika, 1963, 28, 333368.CrossRefGoogle Scholar