Hostname: page-component-5f745c7db-2kk5n Total loading time: 0 Render date: 2025-01-06T23:00:58.818Z Has data issue: true hasContentIssue false

Heterogeneous Factor Analysis Models: A Bayesian Approach

Published online by Cambridge University Press:  01 January 2025

Asim Ansari*
Affiliation:
Columbia University
Kamel Jedidi
Affiliation:
Columbia University
Laurette Dube
Affiliation:
McGill University
*
Requests for reprints should be sent to Asim Ansaxi, 517 Uris Hall, Columbia University, 3022 Broadway, New York, NY, 10027. E-Mail: maa48@columbia.edu

Abstract

Multilevel factor analysis models are widely used in the social sciences to account for heterogeneity in mean structures. In this paper we extend previous work on multilevel models to account for general forms of heterogeneity in confirmatory factor analysis models. We specify various models of mean and covariance heterogeneity in confirmatory factor analysis and develop Markov Chain Monte Carlo (MCMC) procedures to perform Bayesian inference, model checking, and model comparison.

We test our methodology using synthetic data and data from a consumption emotion study. The results from synthetic data show that our Bayesian model perform well in recovering the true parameters and selecting the appropriate model. More importantly, the results clearly illustrate the consequences of ignoring heterogeneity. Specifically, we find that ignoring heterogeneity can lead to sign reversals of the factor covariances, inflation of factor variances and underappreciation of uncertainty in parameter estimates. The results from the emotion study show that subjects vary both in means and covariances. Thus traditional psychometric methods cannot fully capture the heterogeneity in our data.

Type
Articles
Copyright
Copyright © 2002 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansari, A., & Jedidi, K. (2000). Bayesian factor analysis for multilevel binary observations. Psychometrika, 65, 475496.CrossRefGoogle Scholar
Arminger, G., & Muthén, B. (1998). A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm. Psychometrika, 63, 271300.CrossRefGoogle Scholar
Arminger, G., & Stein, P. (1997). Finite mixtures of covariance structure models with regressors: Loglikelihood function, minimum distance estimation, fit indices, and a complex example. Sociological Methods & Research, 26, 148182.CrossRefGoogle Scholar
Arminger, G., Stein, P., & Wittenberg, J. (1998). Mixtures of conditional mean- and covariance structure models. Psychometrika, 64, 475494.CrossRefGoogle Scholar
Bagozzi, R.P., Gopinath, M., & Nyer, P.U. (1999). The role of emotions in marketing. Journal of the Academy of Marketing Science, 27, 184206.CrossRefGoogle Scholar
Bartholomew, D.J. (1981). Posterior analysis of the factor model. British Journal of Mathematical and Statistical Psychology, 34, 9399.CrossRefGoogle Scholar
Best, N.G., Cowles, M.K., & Vines, S.K. (1995). CODA: Convergence diagnostics and output analysis software for Gibbs sampler output, Version 0.3. Cambridge, U.K.: Institute of Public Health, Biostatistics Unit-MRC.Google Scholar
Bladfield, E. (1980). Clustering of observations from finite mixtures with structural information. Jyvaskyla, Finland: Jyvaskyla University.Google Scholar
Bock, R.D., & Gibbons, R.D. (1996). High-dimensional multivariate probit analysis. Biometrics, 52, 11831194.CrossRefGoogle ScholarPubMed
Bollen, K.A. (1989). Structural equations with latent variables. New York, NY: Wiley Interscience.CrossRefGoogle Scholar
Chen, Ming-Hui, & Schmeiser, B.W. (1993). Performance of the Gibbs, hit-and-run, and Metropolis samplers. Journal of Computational and Graphical Statistics, 2, 251272.CrossRefGoogle Scholar
Dey, Dipak K., & Chen, M.H. (1998). Bayesian analysis of correlated binary data models. Sankhya, Series A, 60, 322343.Google Scholar
Dube, L., Belanger, M., & Trudeau, E. (1996). The role of emotions in health care satisfaction. Journal of Health Care Marketing, 16, 4551.Google ScholarPubMed
Dube, L., & Morgan, M.S. (1996). Trend effects and gender differences in retrospective judgments of consumption emotions. Journal of Consumer Research, 23, 156162.CrossRefGoogle Scholar
Geisser, S., & Eddy, E. (1979). A predictive approach to model selection. Journal of the American Statistical Association, 74, 153160.CrossRefGoogle Scholar
Gelfand, A.E. (1996). Model determination using sampling-based methods. In Gilks, W.R., Richardson, S., & Spiegelhalter, D.J. (Eds.), Markov chain Monte Carlo in practice (pp. 145161). London, U.K.: Chapman & Hall.Google Scholar
Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (1996). Posterior Predictive Assessment of Model Fitness (with discussion). Statistica Sinica, 6, 733807.Google Scholar
Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions of Pattern Analysis and Machine Intelligence, 6, 721741.CrossRefGoogle ScholarPubMed
Gilks, W.R., Richardson, S., & Spiegelhalter, D.J. (1996). Markov chain Monte Carlo in practice. London, U.K.: Chapman & Hall.Google Scholar
Goldstein, H., & McDonald, R.P. (1988). A general model for the analysis of multilevel data. Psychometrika, 53, 455467.CrossRefGoogle Scholar
Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97109.CrossRefGoogle Scholar
Jedidi, K., Jagpal, H.S., & DeSarbo, W.S. (1997). Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science, 16, 3959.CrossRefGoogle Scholar
Jedidi, K., Jagpal, H.S., & DeSarbo, W.S. (1997). STEMM: A general finite-mixture structural equation model. Journal of Classification, 14, 2350.CrossRefGoogle Scholar
Jöreskog, K.G. (1971). Simultaneous factor analysis in several populations. Psychometrika, 36, 409426.CrossRefGoogle Scholar
Kaplan, D., & Elliot, P.E. (1997). A Didactic example of multilevel structural equation modeling applicable to the study of organizations. Structural Equation Modeling: A Multidisciplinary Journal, 4, 125.CrossRefGoogle Scholar
Kass, R.E., & Raftery, A.E. (1995). Bayes factors. Journal of American Statistical Association, 90, 773795.CrossRefGoogle Scholar
Lee, S.-Y (1981). A Bayesian approach to confirmatory factor analysis. Psychometrika, 46, 153160.CrossRefGoogle Scholar
Longford, N.T. (1993). Random coefficient models. New York, NY: Oxford University Press.Google Scholar
Longford, N.T., & Muthén, B. (1992). Factor analysis for clustered observations. Psychometrika, 57, 581597.CrossRefGoogle Scholar
Lord, F.M., & Novick, M.R. (1968). Statistical theories of mental test scores. Reading, MA: Addision-Wesley.Google Scholar
Mano, H., & Oliver, R.L. (1993). Assessing the dimensionality and structure of the consumption experience: Evaluation, feeling and satisfaction. Journal of Consumer Research, 20(3), 451466.CrossRefGoogle Scholar
Martin, J.K., & McDonald, R.P. (1975). Bayesian estimation in unrestricted factor analysis: A treatment for Heywood cases. Psychometrika, 40, 505517.CrossRefGoogle Scholar
McDonald, R.P., & Goldstein, H. (1989). Balanced versus unbalanced designs for linear structural relations in two-level data. British Journal of Mathematical and Statistical Psychology, 42, 214232.CrossRefGoogle Scholar
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., & Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21, 10871091.CrossRefGoogle Scholar
Muthén, B. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557585.CrossRefGoogle Scholar
Muthén, B. (1994). Multilevel covariance structure analysis. Sociological Methods & Research, 22, 376398.CrossRefGoogle Scholar
Muthén, B., & Satorra, A. (1989). Multilevel aspects of varying parameters in structural models. In Bock, R.D. (Eds.), Multilevel analysis of educational data (pp. 8799). New York, NY: Academic Press.Google Scholar
Oliver, R.L. (1993). Cognitive, affective, and attribute bases of the satisfaction response. Journal of Consumer Research, 20, 418430.CrossRefGoogle Scholar
Richins, M. (1997). Measuring emotions in the consumption experience. Journal of Consumer Research, 24(2), 127146.CrossRefGoogle Scholar
Scheines, R., Hoijtink, H., & Boomsma, A. (1999). Bayesian estimation and testing of structural equation models. Psychometrika, 64, 3752.CrossRefGoogle Scholar
Shi, J., & Lee, S. (1997). A Bayesian estimation of factor score in confirmatory factor model with polytomous, censored or truncated data. Psychometrika, 62, 2950.CrossRefGoogle Scholar
Sörbom, D. (1981). Structural equation models with structured means. In Jöreskog, K.G., Wold, H. (Eds.), Systems under indirect observation: Causality, structure, and prediction (pp. 183195). Amsterdam, Netherlands: North Holland.Google Scholar
Tanner, M.A., & Wong, W.H. (1987). The calculation of posterior distributions by data augmentation (with discussion). Journal of American Statistical Association, 82, 528550.CrossRefGoogle Scholar
Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Annals of Statistics, 22, 17011762.Google Scholar
Westbrook, R.A., & Oliver, R.L. (1991). The dimensionality of consumption emotion patterns and consumer satisfaction. Journal of Consumer Research, 18, 184191.CrossRefGoogle Scholar
Yao, G., & Böckenholt, U. (1999). Bayesian estimation of Thurstonian ranking models based on the Gibbs sampler. British Journal of Mathematical and Statistical Psychology, 52, 7992.CrossRefGoogle Scholar
Yung, Y.-F. (1997). Finite mixtures in confirmatory factor-analysis models. Psychometrika, 62, 297330.CrossRefGoogle Scholar