Hostname: page-component-5f745c7db-8qdnt Total loading time: 0 Render date: 2025-01-06T06:10:36.693Z Has data issue: true hasContentIssue false

Heteroscedastic Latent Trait Models for Dichotomous Data

Published online by Cambridge University Press:  01 January 2025

Dylan Molenaar*
Affiliation:
University of Amsterdam
*
Correspondence should be sent to Dylan Molenaar, Psychological Methods, Department of Psychology, University of Amsterdam, Weesperplein 4, 1018 XA Amsterdam, The Netherlands. E-mail: D.Molenaar@uva.nl

Abstract

Effort has been devoted to account for heteroscedasticity with respect to observed or latent moderator variables in item or test scores. For instance, in the multi-group generalized linear latent trait model, it could be tested whether the observed (polychoric) covariance matrix differs across the levels of an observed moderator variable. In the case that heteroscedasticity arises across the latent trait itself, existing models commonly distinguish between heteroscedastic residuals and a skewed trait distribution. These models have valuable applications in intelligence, personality and psychopathology research. However, existing approaches are only limited to continuous and polytomous data, while dichotomous data are common in intelligence and psychopathology research. Therefore, in present paper, a heteroscedastic latent trait model is presented for dichotomous data. The model is studied in a simulation study, and applied to data pertaining alcohol use and cognitive ability.

Type
Original Paper
Copyright
Copyright © 2014 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M.J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics, 62, 245253.CrossRefGoogle ScholarPubMed
Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561573.CrossRefGoogle Scholar
Austin, E.J., Deary, I.J., & Gibson, G.J. (1997). Relationships between ability and personality: Three hypotheses tested. Intelligence, 25(1), 4970.CrossRefGoogle Scholar
Azevedo, C. L. N., Bolfarine, H., & Andrade, D. F., (2011). Bayesian inference for a skew-normal IRT model under the centred parameterization. Computational Statistics & Data Analysis, 55, 353–365.CrossRefGoogle Scholar
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12, 171178.Google Scholar
Azzalini, A. (1986). Further results on a class of distributions which includes the normal ones. Statistica, 46, 199208.Google Scholar
Azzalini, A., & Capatanio, A. (1999). Statistical applications of the multivariate skew normal distribution. Journal of the Royal Statistical Society, Series B, 61, 579602.CrossRefGoogle Scholar
Bakker, M., & Wicherts, J. M., (2013). Outlier removal, sum scores, and the inflation of the type I error rate in independent samples t tests: The power of alternatives and recommendations. Psychological Methods. doi:10.1037/met0000014.CrossRefGoogle Scholar
Bartholomew, D.J., Knott, M., & Moustaki, I. (2011). Latent variable models and factor analysis: A unified approach. UK: Wiley.CrossRefGoogle Scholar
Bauer, D. J., & Hussong, A. M., (2009). Psychometric approaches for developing commensurate measures across independent studies: Traditional and new models. Psychological Methods, 14(2), 101–125.CrossRefGoogle Scholar
Bazán, J.L., Branco, M.D., & Bolfarine, H. (2006). A skew item response model. Bayesian Analysis, 1, 861892.CrossRefGoogle Scholar
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In Lord, E.M., & Novick, M.R. (Eds.), Statistical theories of mental test scores (chap (pp. 1720). Reading, MA: Addison Wesley.Google Scholar
Bock, R.D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 2951.CrossRefGoogle Scholar
Bock, R.D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443459.CrossRefGoogle Scholar
Bollen, K.A. (1989). Structural equations with latent variables. New York: Wiley.CrossRefGoogle Scholar
Bollen, K.A. (1996). A limited-information estimator for LISREL models with or without heteroscedastic errors. In Marcoulides, G.A., & Schumacker, R.E. (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 227241). Mahwah, NJ: Erlbaum.Google Scholar
Brunner, E., Dette, H., & Munk, A. (1997). Box-Type Approximations in Nonparametric Factorial Designs. Journal of the American Statistical Association, 92, 14941502.CrossRefGoogle Scholar
Christoffersson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 532.CrossRefGoogle Scholar
Dobson, A.J. (2010). An introduction to generalized linear models. Boca Raton, FL: CRC Press.Google Scholar
Dolan, C. V., (1994). Factor analysis of variables with 2, 3, 5 and 7 response categories: A comparison of categorical variable estimators using simulated data. British Journal of Mathematical and Statistical Psychology, 47(2), 309–326.CrossRefGoogle Scholar
Dolan, C.V., Colom, R., Abad, F.J., Wicherts, J.M., Hessen, D.J., & van de Sluis, S. (2006). Multi-group covariance and mean structure modeling of the relationship between the WAIS-III common factors and sex and educational attainment in Spain. Intelligence, 34, 193210.CrossRefGoogle Scholar
Dolan, C.V., & van der Maas, H.L. (1998). Fitting multivariage normal finite mixtures subject to structural equation modeling. Psychometrika, 63, 227253.CrossRefGoogle Scholar
Dolan, C.V., & Molenaar, P. (1991). A comparison of four methods of calculating standard errors of maximum-likelihood estimates in the analysis of covariance structure. British Journal of Mathematical and Statistical Psychology, 44, 359368.CrossRefGoogle Scholar
Fisher, R.A., (1928). The general sampling distribution of the multiple correlation coefficient. Proceedings of the Royal Society of London. Series A, 121, 654–673.Google Scholar
Fischer, G.H. (1983). Logistic latent trait models with linear constraints. Psychometrika, 48, 326.CrossRefGoogle Scholar
Fokkema, M., Smits, N., Kelderman, H., & Cuijpers, P. (2013). Response shifts in mental health interventions: An illustration of longitudinal measurement invariance. Psychological Assessment, 25, 520531.CrossRefGoogle ScholarPubMed
Greene, W. (2011). Econometric analysis (7th ed.). New York: Prentice Hall.Google Scholar
Grzywacz, J. G., & Marks, N. F., (1999). Family solidarity and health behaviors: Evidence from the National Survey of Midlife Development in the United States. Journal of Family Issues, 20(2), 243–268.CrossRefGoogle Scholar
Harvey, A.C., (1976). Estimating regression models with multiplicative heteroscedasticity. Econometrica: Journal of the Econometric Society, 44, 461–465.CrossRefGoogle Scholar
Hessen, D.J., & Dolan, C.V. (2009). Heteroscedastic one-factor models and marginal maximum likelihood estimation. British Journal of Mathematical and Statistical Psychology, 62, 5777.CrossRefGoogle ScholarPubMed
Hu, L. T., & Bentler, P. M., (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.CrossRefGoogle Scholar
Jansen, B.R., & van der Maas, H.L. (1997). Statistical test of the rule assessment methodology by latent class analysis. Developmental Review, 17, 321357.CrossRefGoogle Scholar
Jarque, C.M., & Bera, A.K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6, 255259.CrossRefGoogle Scholar
Jedidi, K., Jagpal, H.S., & DeSarbo, W.S. (1997). Finite mixture structural equation models for response based segmentation and unobserved heterogeneity. Marketing Science, 16, 3959.CrossRefGoogle Scholar
Jöreskog, K.G. (1971). Simultaneous factor analysis in several populations. Psychometrika, 36, 409426.CrossRefGoogle Scholar
Jöreskog, K.G., & Moustaki, I. (2001). Factor analysis of ordinal variables: A comparison of three approaches. Multivariate Behavioral Research, 36, 347387.CrossRefGoogle ScholarPubMed
Kenny, D.A., & Judd, C.M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 96, 201210.CrossRefGoogle Scholar
Kirisci, L., Hsu, T., & Yu, L. (2001). Robustness of item parameter estimation programs to assumptions of unidimensionality and normality. Applied Psychological Measurement, 25, 146162.CrossRefGoogle Scholar
Klein, A., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65, 457474.CrossRefGoogle Scholar
Lee, S.Y., Poon, W.Y., & Bentler, P.M. (1989). Simultaneous analysis of multivariate polytomous variates in several groups. Psychometrika, 54, 6373.CrossRefGoogle Scholar
Lewin-Koh, S., & Amemiya, Y. (2003). Heteroscedastic factor analysis. Biometrika, 90, 8597.CrossRefGoogle Scholar
Long, J.S., & Ervin, L.H. (2000). Using heteroscedasticity consistent standard errors in the linear regression model. The American Statistician, 54, 217224.CrossRefGoogle Scholar
Lord, F.M. (1952). A theory of test scores. New York: Psychometric Society.Google Scholar
Lucke, J.F., (2012). Positive Trait Item Response Models. Proceedings of the 2012 Joint Statistical Meetings of the American Statistical Association, the International Biometric Society, the Institute of Mathematical Statistics, and Statistica Canada. San Diego, CA. 2012. Retrieved from http://works.bepress.com/joseph_lucke/35.Google Scholar
Masters, G.N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149174.CrossRefGoogle Scholar
Mehta, P.D., & Neale, M.C. (2005). People are variables too: Multilevel structural equations modeling. Psychological Methods, 10, 259284.CrossRefGoogle ScholarPubMed
Mehta, P.D., Neale, M.C., & Flay, B.R. (2004). Squeezing interval change from ordinal panel data: Latent growth curves with ordinal outcomes. Psychological Methods, 9, 301.CrossRefGoogle ScholarPubMed
Meijer, E., & Mooijaart, A. (1996). Factor analysis with heteroscedastic errors. British Journal of Mathematical and Statistical Psychology, 49, 189202.CrossRefGoogle Scholar
Merkle, E. C., Fan, J., & Zeileis, A., (2013). Testing for measurement invariance with respect to an ordinal variable. Psychometrika, 1–16. doi:10.1007/s11336-013-9376-7.CrossRefGoogle Scholar
Merkle, E.C., & Zeileis, A. (2013). Tests of measurement invariance without subgroups: A generalization of classical methods. Psychometrika, 78, 5982.CrossRefGoogle ScholarPubMed
Mellenbergh, G.J. (1994). A unidimensional latent trait model for continuous item responses. Multivariate Behavioral Research, 29, 223236.CrossRefGoogle ScholarPubMed
Mellenbergh, G.J. (1994). Generalized linear item response theory. Psychological Bulletin, 115, 300307.CrossRefGoogle Scholar
Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58, 525543.CrossRefGoogle Scholar
Millsap, R.E., & Yun-Tein, J. (2004). Assessing factorial invariance in ordered-categorical measures. Multivariate Behavioral Research, 39, 479515.CrossRefGoogle Scholar
Mislevy, R.J., & Verhelst, N. (1990). Modeling item responses when different subjects employ different solution strategies. Psychometrika, 55, 195215.CrossRefGoogle Scholar
Molenaar, D., Dolan, C.V., & de Boeck, P. (2012). The heteroscedastic graded response model with a skewed latent trait: Testing statistical and substantive hypotheses related to skewed item category functions. Psychometrika, 77, 455478.CrossRefGoogle ScholarPubMed
Molenaar, D., Dolan, C.V., & van der Maas, H.L. (2011). Modeling ability differentiation in the second order factor model. Structural Equation Modeling, 18, 578594.CrossRefGoogle Scholar
Molenaar, D., Dolan, C. V., & Verhelst, N. D., (2010a). Testing and modeling non-normality within the one factor model. British Journal of Mathematical and Statistical Psychology, 63, 293–317.CrossRefGoogle Scholar
Molenaar, D., van der Sluis, S., Boomsma, D.I., & Dolan, C.V. (2012). Detecting specific genotype by environment interaction using marginal maximum likelihood estimation in the classical twin design. Behavior Genetics, 42, 483499.CrossRefGoogle ScholarPubMed
Molenaar, D., Dolan, C.V., Wicherts, J.M., & van der Maas, H.L.J. (2010). Modeling differentiation of cognitive abilities within the higher-order factor model using moderated factor analysis. Intelligence, 38, 611624.CrossRefGoogle Scholar
Moustaki, I., & Knott, M. (2000). Generalized latent trait models. Psychometrika, 65, 391411.CrossRefGoogle Scholar
Murray, A.L., Dixon, H., & Johnson, W. (2013). Spearman’s law of diminishing returns: A statistical artifact?. Intelligence, 41, 439451.CrossRefGoogle Scholar
Muthén, B.O. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551560.CrossRefGoogle Scholar
Muthén, B.O., & Christoffersson, A. (1981). Simultaneous factor analysis of dichotomous variables in several groups. Psychometrika, 46, 407419.CrossRefGoogle Scholar
Muthén, L. K., & Muthén, B. O., (2007). Mplus user’s guide (5th edn.). Los Angeles, CA: Muthén & Muthén.Google Scholar
Neale, M.C., Aggen, S.H., Maes, H.H., Kubarych, T.S., & Schmitt, J.E. (2006). Methodological issues in the assessment of substance use phenotypes. Addicitive Behavior, 31, 1010–34.CrossRefGoogle ScholarPubMed
Neale, M.C., Boker, S.M., Xie, G., & Maes, H.H. (2006). Mx: Statistical modeling (7th ed.). VCU, Richmond, VA: Author.Google Scholar
Nocedal, J., & Wright, S.J. (2006). Numerical optimization (2nd ed.). New York: Springer.Google Scholar
Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44, 443460.CrossRefGoogle Scholar
Purcell, S. (2002). Variance components models for gene-environment interaction in twin analysis. Twin Research, 5, 554571.CrossRefGoogle ScholarPubMed
Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). Generalized multilevel structural equation modeling. Psychometrika, 69, 167190.CrossRefGoogle Scholar
R Core Team. (2012). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Raven, J. (2000). The Raven’s progressive matrices: Change and stability over culture and time. Cognitive Psychology, 41, 148.CrossRefGoogle ScholarPubMed
Ree, M.J. (1979). Estimating item characteristic curves. Applied Psychological Measurement, 3, 371385.CrossRefGoogle Scholar
Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271282.CrossRefGoogle Scholar
Samejima, F., (1969). Estimation of ability using a response pattern of graded scores (Psychometric Monograph No. 17). Richmond, VA: The Psychometric Society.Google Scholar
Samejima, F. (1997). Departure from normal assumptions: A promise for future psychometrics with substantive mathematical modeling. Psychometrika, 62, 471493.CrossRefGoogle Scholar
Samejima, F. (2000). Logistic positive exponent family of models: Virtue of asymmetric item characteristic curves. Psychometrika, 65, 319335.CrossRefGoogle Scholar
Samejima, F. (2008). Graded response model based on the logistic positive exponent family of models for dichotomous responses. Psychometrika, 73, 561578.CrossRefGoogle Scholar
SAS Institute. (2011). SAS/STAT 9.3 user’s guide. SAS Institute.Google Scholar
Satorra, A., & Saris, W.E. (1985). The power of the likelihood ratio test in covariance structure analysis. Psychometrika, 50, 8390.CrossRefGoogle Scholar
Selzer, M.L. (1971). The michigan alcohol screening test: The quest for a new diagnostic instrument. American Journal of Psychiatry, 127, 8994.CrossRefGoogle ScholarPubMed
Seong, T.J. (1990). Sensitivity of marginal maximum likelihood estimation of item and ability parameters to the characteristics of the prior ability distributions. Applied Psychological Measurement, 14, 299311.CrossRefGoogle Scholar
Skrondal, A. (1996). Latent trait, multilevel and repeated measurement modeling with incomplete data of mixed measurement levels. Oslo: UiO.Google Scholar
Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models. Boca Raton, FL: Chapman and Hall/CRC.CrossRefGoogle Scholar
Slutsky, E.E. (1913). On the criterion of goodness of fit of the regression lines and on the best method of fitting them to the data. Journal of the Royal Statistical Society, 77, 7884.CrossRefGoogle Scholar
Stevens, J. (2009). Applied multivariate statistics for the social sciences. USA: Taylor & Francis.Google Scholar
Stone, C.A. (1992). Recovery of marginal maximum likelihood estimates in the two-parameter logistic response model: An evaluation of MULTILOG. Applied Psychological Measurement, 16, 116.CrossRefGoogle Scholar
Swaminathan, H., & Gifford, J. (1983). Estimation of parameters in the three- parameter latent trait model. In Weiss, D.J. (Ed.), New horizons in testing: Latent trait test theory and computerized adaptive testing (pp. 1330. New York: Academic Press.Google Scholar
Takane, Y., & de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393408.CrossRefGoogle Scholar
Thissen, D., & Steinberg, L. (1984). A response model for multiple choice items. Psychometrika, 49, 501519.CrossRefGoogle Scholar
Thissen, D., & Steinberg, L. (1986). A taxonomy of item response models. Psychometrika, 51, 567577.CrossRefGoogle Scholar
Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I.I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological science, 14(6), 623628.CrossRefGoogle ScholarPubMed
van der Sluis, S., Dolan, C.V., Neale, M.C., Boomsma, D.I., & Posthuma, D. (2006). Detecting genotype-environment interaction in monozygotic twin data: Comparing the Jinks & Fulker test and a new test based on marginal maximum likelihood estimation. Twin Research and Human Genetics, 9, 377392.CrossRefGoogle Scholar
van der Sluis, S., Posthuma, D., & Dolan, C.V., (2012). A note on false positives and power in G×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} E modelling of twin data. Behavior Genetics. 42, 170186.Google Scholar
Wicherts, J.M., & Bakker, M. (2012). Publish (your data) or (let the data) perish! Why not publish your data too?. Intelligence, 40, 7376.CrossRefGoogle Scholar
Zwinderman, A.H., & van den Wollenberg, A.L. (1990). Robustness of marginal maximum likelihood estimation in the Rasch model. Applied Psychological Measurement, 14, 7381.CrossRefGoogle Scholar