Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-07T18:18:35.590Z Has data issue: false hasContentIssue false

Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments

Published online by Cambridge University Press:  01 January 2025

Daniel Spencer*
Affiliation:
University of California
Rajarshi Guhaniyogi
Affiliation:
University of California
Raquel Prado
Affiliation:
University of California
*
Correspondence should be made to Daniel Spencer, Department of Statistics, University of California, Santa Cruz, CA, USA. Email: daspence@ucsc.edu; URL: https://users.soe.ucsc.edu/~daspence/

Abstract

Brain activation and connectivity analyses in task-based functional magnetic resonance imaging (fMRI) experiments with multiple subjects are currently at the forefront of data-driven neuroscience. In such experiments, interest often lies in understanding activation of brain voxels due to external stimuli and strong association or connectivity between the measurements on a set of pre-specified groups of brain voxels, also known as regions of interest (ROI). This article proposes a joint Bayesian additive mixed modeling framework that simultaneously assesses brain activation and connectivity patterns from multiple subjects. In particular, fMRI measurements from each individual obtained in the form of a multi-dimensional array/tensor at each time are regressed on functions of the stimuli. We impose a low-rank parallel factorization decomposition on the tensor regression coefficients corresponding to the stimuli to achieve parsimony. Multiway stick-breaking shrinkage priors are employed to infer activation patterns and associated uncertainties in each voxel. Further, the model introduces region-specific random effects which are jointly modeled with a Bayesian Gaussian graphical prior to account for the connectivity among pairs of ROIs. Empirical investigations under various simulation studies demonstrate the effectiveness of the method as a tool to simultaneously assess brain activation and connectivity. The method is then applied to a multi-subject fMRI dataset from a balloon-analog risk-taking experiment, showing the effectiveness of the model in providing interpretable joint inference on voxel-level activations and inter-regional connectivity associated with how the brain processes risk. The proposed method is also validated through simulation studies and comparisons to other methods used within the neuroscience community.

Type
Theory and Methods
Copyright
Copyright © 2020 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armagan, A., Dunson, D. B., & Lee, J. (2013). Generalized double Pareto shrinkage. Statistica Sinica, 23(1), 119.Google ScholarPubMed
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289300.CrossRefGoogle Scholar
Bowman, F. D., Caffo, B., Bassett, S. S., & Kilts, C. (2008). A Bayesian hierarchical framework for spatial modeling of fMRI data. Neuroimage, 39(1), 146156.CrossRefGoogle Scholar
Brown, P. J., Vannucci, M., & Fearn, T. (1998). Multivariate Bayesian variable selection and prediction. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(3), 627641.CrossRefGoogle Scholar
Carvalho, C. M., Polson, N. G., & Scott, J. G. (2010). The horseshoe estimator for sparse signals. Biometrika, 97(2), 465480.CrossRefGoogle Scholar
Collins, D. L., Holmes, C. J., Peters, T. M., & Evans, A. C. (1995). Automatic 3-D model-based neuroanatomical segmentation. Human Brain Mapping, 3(3), 190208.CrossRefGoogle Scholar
Das, A., Sampson, A. L., Lainscsek, C., Muller, L., Lin, W., Doyle, J. C., Cash, S. S., Halgren, E., & Sejnowski, T. J. (2017). Interpretation of the precision matrix and its application in estimating sparse brain connectivity during sleep spindles from human electrocorticography recordings. Neural Computation, 29(3), 603642.CrossRefGoogle ScholarPubMed
Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences, 113(28), 79007905.CrossRefGoogle ScholarPubMed
Flandin, G., Penny, W. D. (2007). Bayesian fMRI data analysis with sparse spatial basis function priors. Neuroimage, 34(3), 11081125.CrossRefGoogle ScholarPubMed
Friston, K. J., Ashburner, J., Frith, C. D., Poline, J.-B., Heather, J. D., & Frackowiak, R. S. J. (1995). Spatial registration and normalization of images. Human Brain Mapping, 3(3), 165189.CrossRefGoogle Scholar
Friston, K. J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M. D., & Turner, R. (1998). Event-related fMRI: Characterizing differential responses. Neuroimage, 7(1), 3040.CrossRefGoogle ScholarPubMed
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis, Boca Raton:CRC Press.Google Scholar
George, E. I., & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88(423), 881889.CrossRefGoogle Scholar
Guhaniyogi, R., & Spencer, D. (2018). Bayesian tensor response regression with an application to brain activation studies. Technical report, UCSC.Google Scholar
Guhaniyogi, R., Qamar, S., & Dunson, D. B. (2017). Bayesian tensor regression. Journal of Machine Learning Research, 18(79), 131.Google Scholar
Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., Penna, S. D., Duyn, J. H., Glover, G. H., Gonzalez-Castillo, J.et.al.(2013). Dynamic functional connectivity: Promise, issues, and interpretations. Neuroimage, 80, 360378.CrossRefGoogle ScholarPubMed
Ishwaran, H., Rao, J. S.et.al.(2005). Spike and slab variable selection: Frequentist and Bayesian strategies. The Annals of Statistics, 33(2), 730773.CrossRefGoogle Scholar
Jenkinson, M., Beckmann, C. F., Behrens, TEJ, Woolrich, M. W., & Smith, S. M. (2012). Fsl. Neuroimage, 62(2), 782790.CrossRefGoogle ScholarPubMed
Kalus, S., Sämann, P. G., & Fahrmeir, L. (2014). Classification of brain activation via spatial Bayesian variable selection in fMRI regression. Advances in Data Analysis and Classification, 8(1), 6383.CrossRefGoogle Scholar
Kiers, HAL (2000). Towards a standardized notation and terminology in multiway analysis. Journal of Chemometrics: A Journal of the Chemometrics Society, 14(3), 105122.3.0.CO;2-I>CrossRefGoogle Scholar
Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3), 455500.CrossRefGoogle Scholar
Kook, J. H., Guindani, M., Zhang, L., & Vannucci, M. (2019). NPBayes-fMRI: Non-parametric Bayesian general linear models for single- and multi-subject fMRI data. Statistics in Biosciences, 11(1), 321.CrossRefGoogle Scholar
Lazar, N. (2008). The statistical analysis of functional MRI data, New York:Springer.Google Scholar
Lee, K-J, Jones, G. L., Caffo, B. S., & Bassett, S. S. (2014). Spatial Bayesian variable selection models on functional magnetic resonance imaging time-series data. Bayesian Analysis (Online), 9(3), 699.Google ScholarPubMed
Li, H., & Pati, D. (2017). Variable selection using shrinkage priors. Computational Statistics & Data Analysis, 107, 107119.CrossRefGoogle Scholar
Li, L., & Zhang, X. (2017). Parsimonious tensor response regression. Journal of the American Statistical Association, 112(519), 11311146.CrossRefGoogle Scholar
Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T., Simpson, G., Pike, B.et.al.(2001). A probabilistic atlas and reference system for the human brain: International consortium for brain mapping (ICBM). Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1412), 12931322.CrossRefGoogle Scholar
Miller, L., & Milner, B. (1985). Cognitive risk-taking after frontal or temporal lobectomy—ii. The synthesis of phonemic and semantic information. Neuropsychologia, 23(3), 371379.CrossRefGoogle ScholarPubMed
Ng, B., Abugharbieh, R., Varoquaux, G., Poline, J. B., & Thirion, B. (2011). Connectivity-informed fMRI activation detection. In International conference on medical image computing and computer-assisted intervention (pp. 285–292). Springer.CrossRefGoogle Scholar
Olshausen, B. A., & Field, D. J. (2004). Sparse coding of sensory inputs. Current Opinion in Neurobiology, 14(4), 481487.CrossRefGoogle ScholarPubMed
Patel, R. S., Bowman, FDB, & Rilling, J. K. (2006). A Bayesian approach to determining connectivity of the human brain. Human Brain Mapping, 27(3), 267276.CrossRefGoogle ScholarPubMed
Patel, R. S., Bowman, FDB, & Rilling, J. K. (2006). Determining hierarchical functional networks from auditory stimuli fMRI. Human Brain Mapping, 27(5), 462470.CrossRefGoogle ScholarPubMed
Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., & Nichols, T. E. (2011). Statistical parametric mapping: The analysis of functional brain images, Boston:Elsevier.Google Scholar
Sanyal, N., & Ferreira, MAR (2012). Bayesian hierarchical multi-subject multiscale analysis of functional MRI data. Neuroimage, 63(3), 15191531.CrossRefGoogle ScholarPubMed
Schonberg, T., Fox, C. R., Mumford, J. A., Congdon, E., Trepel, C., & Poldrack, R. A. (2012). Decreasing ventromedial prefrontal cortex activity during sequential risk-taking: An fMRI investigation of the balloon analog risk task. Frontiers in Neuroscience, 6, 80.CrossRefGoogle ScholarPubMed
Scott, J. G., & Berger, J. O. (2010). Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. The Annals of Statistics, 38(5), 25872619.CrossRefGoogle Scholar
Smith, M., & Fahrmeir, L. (2007). Spatial Bayesian variable selection with application to functional magnetic resonance imaging. Journal of the American Statistical Association, 102(478), 417431.CrossRefGoogle Scholar
Wang, H.et.al.(2012). Bayesian graphical LASSO models and efficient posterior computation. Bayesian Analysis, 7(4), 867886.CrossRefGoogle Scholar
Wang, X., Nan, B., Zhu, J., & Koeppe, R. (2014). Regularized 3D functional regression for brain image data via Haar wavelets. The Annals of Applied Statistics, 8(2), 1045.CrossRefGoogle ScholarPubMed
Wang, Y., Kang, J., Kemmer, P. B., & Guo, Y. (2018). DensParcorr: Dens-based method for partial correlation estimation in large scale brain networks. Retrieved January 18, 2019 from https://CRAN.R-project.org/package=DensParcorr. R package version 1.1.Google Scholar
Warnick, R., Guindani, M., Erhardt, E., Allen, E., Calhoun, V., & Vannucci, M. (2018). A Bayesian approach for estimating dynamic functional network connectivity in fMRI data. Journal of the American Statistical Association, 113(521), 134151.CrossRefGoogle ScholarPubMed
Welvaert, M., Durnez, J., Moerkerke, B., Verdoolaege, G., & Rosseel, Y. (2011). neuRosim: An R package for generating fMRI data. Journal of Statistical Software, 44(10), 118.CrossRefGoogle Scholar
Welvaert, M., & Rosseel, Y. (2013). On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data. PLoS one, 8(11), e77089.CrossRefGoogle ScholarPubMed
Xu, L., Johnson, T. D., Nichols, T. E., & Nee, D. E. (2009). Modeling inter-subject variability in fMRI activation location: A Bayesian hierarchical spatial model. Biometrics, 65(4), 10411051.CrossRefGoogle ScholarPubMed
Yu, C.-H., Prado, R., Ombao, H., & Rowe, D. (2018). A Bayesian variable selection approach yields improved detection of brain activation from complex-valued fMRI. Journal of the American Statistical Association, 113(524), 13951410.CrossRefGoogle Scholar
Zhang, J., Li, X., Li, C., Lian, Z., Huang, X., Zhong, G., Zhu, D., Li, K., Jin, C., Hu, X.et.al.(2014). Inferring functional interaction and transition patterns via dynamic Bayesian variable partition models. Human Brain Mapping, 35(7), 33143331.CrossRefGoogle ScholarPubMed
Zhang, L., Guindani, M., & Vannucci, M. (2015). Bayesian models for functional magnetic resonance imaging data analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 7(1), 2141.CrossRefGoogle Scholar
Zhang, L., Guindani, M., Versace, F., Engelmann, J. M., & Vannucci, M. (2016). A spatiotemporal nonparametric Bayesian model of multi-subject fMRI data. The Annals of Applied Statistics, 10(2), 638666.CrossRefGoogle Scholar
Zhang, L., Guindani, M., Versace, F., & Vannucci, M. (2014). A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses. Neuroimage, 95, 162175.CrossRefGoogle ScholarPubMed
Zhou, H., Li, L., & Zhu, H. (2013). Tensor regression with applications in neuroimaging data analysis. Journal of the American Statistical Association, 108(502), 540552.CrossRefGoogle ScholarPubMed
Zhu, H., Fan, J., & Kong, L. (2014). Spatially varying coefficient model for neuroimaging data with jump discontinuities. Journal of the American Statistical Association, 109(507), 10841098.CrossRefGoogle ScholarPubMed