Hostname: page-component-5f745c7db-szhh2 Total loading time: 0 Render date: 2025-01-06T07:21:36.018Z Has data issue: true hasContentIssue false

Jörg Henseler (2021). Composite-Based Structural Equation Modeling: Analyzing Latent and Emergent Variables

Review products

Jörg Henseler (2021). Composite-Based Structural Equation Modeling: Analyzing Latent and Emergent Variables

Published online by Cambridge University Press:  01 January 2025

Laura Trinchera*
Affiliation:
Neoma Business School

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Review
Copyright
Copyright © 2022 The Author(s) under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bollen, K. A.(1989).A new incremental fit index for general structural equation models.Sociological Methods & Research,17(3),303316.CrossRefGoogle Scholar
Edwards, J. R., &Bagozzi, R. P.(2000).On the nature and direction of relationships between constructs and measures.Psychological Methods,5(2),155CrossRefGoogle ScholarPubMed
Henseler, J., & Dijkstra, T. (2015). ADANCO 2.0 professional. Composite Modeling, Kleve, Germany. www.compositemodeling.com.Google Scholar
Martilla, J. A., &James, J. C.(1977).Importance-performance analysis.Journal of Marketing,41(1),7779.CrossRefGoogle Scholar
Rademaker, M. E., & Schuberth, F. (2020). cSEM: Composite-based structural equation modeling. Package version: 0.4.0. https://m-e-rademaker.github.io/cSEM/.Google Scholar
Tenenhaus, M.,Esposito Vinzi, V.,Chatelin, Y. M., &Lauro, C.(2005).PLS path modeling.Computational Statistics & Data Analysis,48(1),159205.CrossRefGoogle Scholar