Hostname: page-component-5f745c7db-tvc9f Total loading time: 0 Render date: 2025-01-06T06:41:20.077Z Has data issue: true hasContentIssue false

A Latent Class Model for Rating Data

Published online by Cambridge University Press:  01 January 2025

Jürgen Rost*
Affiliation:
IPN-Institute for Science Education, Kiel
*
Jürgen Rost, IPN Institute for Science Education, Olshausenstraße 40, D-2300 Kiel, Federal Republic of Germany.

Abstract

A latent class model for rating data is presented which is the analogue of Andrich's binomial Rasch model for Lazarsfeld's latent class analysis (LCA). The response probabilities for the rating categories follow a binomial distribution and depend on class-specific item parameters. The EM-algorithm for parameter estimation as well as goodness of fit tests for the model are described. An example using questionnaire items on interest in physics illustrates the use of the model as an alternative to the latent trait approach of analyzing test data.

Type
Original Paper
Copyright
Copyright © 1985 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

I would like to thank Clifford Clogg and the anonymous reviewers for their helpful comments.

References

Andersen, E. B. (1982). Latent structure analysis—A survey. Scandinavian Journal of Statistics, 9, 112.Google Scholar
Andrich, D. (1978). A binomial latent trait model for the study of Likert-style attitude questionnaires. British Journal of Mathematical and Statistical Psychology, 31, 8498.CrossRefGoogle Scholar
Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561573.CrossRefGoogle Scholar
Andrich, D. (1982). An extension of the Rasch model for ratings providing both location and dispersion parameters. Psychometrika, 47(1), 105113.CrossRefGoogle Scholar
Bentler, P. M., & Tanaka, J. S. (1983). Problems with EM for ML factor analysis. Psychometrika, 48, 247251.CrossRefGoogle Scholar
Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete multivariate analysis: Theory and practice, Cambridge: The MIT Press.Google Scholar
Clogg, C. C. (1977). Unrestricted and restricted maximum likelihood latent structure analysis: A manual for users, University: Pennsylvania Population Issues Research Office.Google Scholar
Clogg, C. C. (1979). Some latent structure models for the analysis of Likert-type data. Social Science Research, 8, 287301.CrossRefGoogle Scholar
Clogg, C. C., & Goodman, L. A. (in press). Simultaneous latent structure analysis in several groups. Sociological Methodology 1985. San Francisco: Jossey-Bass.Google Scholar
Clogg, C. C., & Sawyer, D. O. (1981). A comparison of alternative models for analyzing the scalability of response patterns. In Leinhardt, S. (Eds.), Sociological Methodology 1981 (pp. 240280). San Francisco: Jossey-Bass.Google Scholar
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM-algorithm. Journal of the Royal Statistical Society, 39 B122.CrossRefGoogle Scholar
Douglas, G. A. (1978). Conditional maximum-likelihood estimation for a multiplicative binomial response model. British Journal of Mathematical and Statistical Psychology, 31, 7383.CrossRefGoogle Scholar
Everitt, B. S., & Hand, D. J. (1981). Finite mixture distributions, London: Chapman and Hall.CrossRefGoogle Scholar
Fienberg, S. E. (1979). The use of chi-squared statistics for categorical data problems. Journal of the Royal Statistical Society, 41 B5464.CrossRefGoogle Scholar
Goodman, L. A., & Magidson, J. (1978). Analyzing qualitative/categorical data: Log-linear models and latent-structure analysis, Cambridge: Abt Books.Google Scholar
Goodman, L. A. (1979). On the estimation of parameters in latent structure analysis. Psychometrika, 44, 123128.CrossRefGoogle Scholar
Haberman, S. J. (1979). Analysis of qualitative data, Vol. 2: New Developments, New York: Academic Press.Google Scholar
Häussler, P., Hoffmann, L., & Rost, J. (1984). Langzeitwirkungen von Physikunterricht [Long term effects of physics instruction]. Unpublished manuscript.Google Scholar
Langeheine, R. (1982). Kausalanalyse qualitativer Daten mit manifesten und latenten Variablen [Causal analysis of qualitative data including manifest and latent variables]. Zeitschrift für Sozialpsychologie, 13, 163176.Google Scholar
Larntz, K. (1978). Small sample comparisons of exact levels for chi-square goodness-of-fit statistics. Journal of the American Statistical Association, 77, 253263.CrossRefGoogle Scholar
Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis, Boston: Houghton Mifflin Co..Google Scholar
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149174.CrossRefGoogle Scholar
Milligan, G. W. (1980). Factors that affect type I and type II error rates in the analysis of multidimensional contingency tables. Psychological Bulletin, 87, 238244.CrossRefGoogle Scholar
Rost, J. (1982). Testtheoretische Modelle für die klinisch-psychologische Forschung und Diagnostik. In Baumann, & Berbalk, , Seidenstücker, (Eds.), Klinische Psychologie: Trends in Forschung und Praxis, Bern: Huber.Google Scholar
Rost, J. (1982). An unconditional likelihood ratio for testing item homogeneity in the Rasch model. Education Research and Perspectives, 9, 717.Google Scholar
Rost, J., & Sönnichsen, H. (1983). Probabilistische Testmodelle für Ratingdaten—Beschreibung der Computerprogramme RASBIN und LCABIN [Probabilitic test models for rating data—A manual of the computer programs RASBIN and LCABIN]. IPN-Kurzberichte 28, Kiel.Google Scholar
Rubin, D. B., & Thayer, D. T. (1983). More on EM for ML factor analysis. Psychometrika, 48, 253257.CrossRefGoogle Scholar