Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T15:38:10.380Z Has data issue: false hasContentIssue false

A Latent Class Multidimensional Scaling Model for Two-Way One-Mode Continuous Rating Dissimilarity Data

Published online by Cambridge University Press:  01 January 2025

J. Fernando Vera*
Affiliation:
University of Granada
Rodrigo Macías
Affiliation:
University of Granada
Willem J. Heiser
Affiliation:
Leiden University
*
Requests for reprints should be sent to J. Fernando Vera, Department of Statistics and O.R., Faculty of Sciences, University of Granada, 18071 Granada, Spain. E-mail: jfvera@ugr.es

Abstract

In this paper, we propose a cluster-MDS model for two-way one-mode continuous rating dissimilarity data. The model aims at partitioning the objects into classes and simultaneously representing the cluster centers in a low-dimensional space. Under the normal distribution assumption, a latent class model is developed in terms of the set of dissimilarities in a maximum likelihood framework. In each iteration, the probability that a dissimilarity belongs to each of the blocks conforming to a partition of the original dissimilarity matrix, and the rest of parameters, are estimated in a simulated annealing based algorithm. A model selection strategy is used to test the number of latent classes and the dimensionality of the problem. Both simulated and classical dissimilarity data are analyzed to illustrate the model.

Type
Theory and Methods
Copyright
Copyright © 2008 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitkin, M., Anderson, D., Hinde, J. (1981). Statistical modelling of data on teaching styles. Journal of the Royal Statistical Society, Series A, 144, 419461.CrossRefGoogle Scholar
Akaike, H. (2007). On entropy maximization. In Krishnaiah, P. R. (Eds.), Applications of statistics (pp. 2741). Amsterdam: North-Holland.Google Scholar
Andrieu, C., & Doucet, A. (1998). Simulated annealing for Bayesian estimation of hidden Markov models. Tr 317, Department of Engineering, University of Cambridge.Google Scholar
Andrews, R. L., Manrai, A. K. (1999). MDS maps for product attributes and market response: an application to scanner panel data. Marketing Science, 18, 584604.CrossRefGoogle Scholar
Bock, H. H. (1986). Multidimensional scaling in the framework of cluster analysis. In Hermes, H. J., Optiz, O., Degens, P. O. (Eds.), Studien zur Klassifikation: [Classification and its Environment] (pp. 247258). Frankfurt: INDEKS-Verlag.Google Scholar
Bock, H. H. (1987). On the interface between cluster analysis, principal component analysis, and multidimensional scaling. In Bozdogan, H., Gupta, A. K. (Eds.), Multivariate Statistical Modeling and Data Analysis (pp. 1734). New York: Reidel.CrossRefGoogle Scholar
Böckenholt, U., Böckenholt, I. (1990). Modeling individual differences in unfolding preference data: a restricted latent class approach. Applied Psychological Measurement, 14, 257269.CrossRefGoogle Scholar
Böckenholt, U., Böckenholt, I. (1991). Constrained latent class analysis: simultaneous classification and scaling of discrete choice data. Psychometrika, 56, 699716.CrossRefGoogle Scholar
Brusco, M. J. (2001). A simulated annealing heuristic for unidimensional and multidimensional (city-block) scaling of symmetric proximity matrices. Journal of Classification, 18, 333.CrossRefGoogle Scholar
Brusco, M. J., Cradit, J. D. (2005). ConPar: A method for identifying groups of concordant subject proximity matrices for subsequent multidimensional scaling analyses. Journal of Mathematical Psychology, 49, 142154.CrossRefGoogle Scholar
Chintagunta, P. K. (1994). Heterogeneous logit model implications for brand positioning. Journal of Marketing Research, 31, 304311.CrossRefGoogle Scholar
Černy, V. (1985). Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications, 45, 4151.CrossRefGoogle Scholar
Diday, E., Govaert, G. (1977). Classification automatique avec distances adaptatives. RAIRO Informatique/Computer Sciences, 11, 329349.Google Scholar
de Leeuw, J., Heiser, W. J. (1980). Multidimensional scaling with restrictions on the configuration. In Krishnaiah, P. R. (Eds.), Multivariate analysis (pp. 501522). Amsterdam: North-Holland.Google Scholar
Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B, 39, 138.CrossRefGoogle Scholar
DeSarbo, W., Howard, D. J., Jedidi, K. (1991). MULTICLUS: a new method for simultaneously performing multidimensional scaling and cluster analysis. Psychometrika, 56, 121136.CrossRefGoogle Scholar
DeSarbo, W., Ajay, K. M., Lalita, A. M. (1994). Latent class multidimensional scaling: a review of recent developments in the marketing and psychometric literature. In Richard, P. B. (Eds.), Advanced Methods of Marketing Research (pp. 190222). Cambridge: Blackwell Publishers.Google Scholar
De Soete, G., Hubert, L. J., Arabie, P. (1988). The comparative performance of simulated annealing on two problems of combinatorial data analysis. In Diday, E. (Eds.), Data analysis and informatics (pp. 489496). Amsterdam: North-Holland.Google Scholar
De Soete, G. (1990). A latent class approach to modeling pairwise preferential choice data. In Schader, M., Gaul, W. (Eds.), Knowledge, data and computer-assisted decisions (pp. 103113). Berlin: Springer.CrossRefGoogle Scholar
De Soete, G. (1992). Using latent class analysis in categorization research. In Van Mechelen, I., Hampton, J., Michalski, R., Theuns, P. (Eds.), Categories and concepts: theoretical views and inductive data analysis (pp. 309330). London: Academic.Google Scholar
De Soete, G., DeSarbo, W. S. (1991). A latent class probit model for analyzing pick any/N data. Journal of Classification, 8, 4563.CrossRefGoogle Scholar
De Soete, G., Heiser, W. J. (1993). A latent class unfolding model for analyzing single stimulus preference ratings. Psychometrika, 58, 545565.CrossRefGoogle Scholar
De Soete, G., Winsberg, S. (1993). A Thurstonian pairwise choice model with univariate and multivariate spline transformations. Psychometrika, 58, 233256.CrossRefGoogle Scholar
De Soete, G., Winsberg, S. (1993). A latent class vector model for analyzing preference ratings. Journal of Classification, 10, 195218.CrossRefGoogle Scholar
Formann, A. K. (1989). Constrained latent class models: Some further applications. British Journal of Mathematical and Statistical Psychology, 42, 3754.CrossRefGoogle Scholar
Gordon, A. D. (1999). Classification, (2nd ed.). London/Boca Raton: Chapman and Hall/CRC.CrossRefGoogle Scholar
Heiser, W. J. (1993). Clustering in low-dimensional space. In Lausen, B., Klar, R., Opitz, O. (Eds.), Information and classification: concepts, methods and applications (pp. 162173). Heidelberg: Springer.CrossRefGoogle Scholar
Heiser, W. J., Groenen, P. J. F. (1997). Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima. Psychometrika, 62, 6383.CrossRefGoogle Scholar
Hope, A. C. (1968). A simplified Monte Carlo significance test procedure. Journal of the Royal Statistical Society, Series B, 30, 582598.CrossRefGoogle Scholar
Ingrassia, S. (1991). Mixture decomposition via the simulated annealing algorithm. Applied Stochastic Models and Data Analysis, 7, 317325.CrossRefGoogle Scholar
Ingrassia, S. (1992). A comparison between the simulated annealing and the EM algorithms in normal mixture decompositions. Statistics and Computing, 2, 203211.CrossRefGoogle Scholar
Kirkpatrick, S., Gelatt, D., Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671680.CrossRefGoogle ScholarPubMed
Klein, R. W., Dubes, R. C. (1989). Experiments in projection and clustering by simulated annealing. Pattern Recognition, 22, 220231.CrossRefGoogle Scholar
Lee, D. M. (2001). Determining the dimensionality of multidimensional scaling representations for cognitive modeling. Journal of Mathematical Psychology, 45, 149166.CrossRefGoogle ScholarPubMed
McLachlan, G. J., Basford, K. E. (1988). Mixture models, New York: Marcel Dekker.Google ScholarPubMed
McLachlan, G. J., Krishnan, T. (1997). The EM algorithm and extensions, New York: Wiley.Google Scholar
McLachlan, G. J., Peel, D. (2001). Finite mixture models, New York: Wiley.Google Scholar
Metropolis, N. A., Rosenbluth, M., Rosenbluth, A., Teller, A., Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 10871092.CrossRefGoogle Scholar
Murillo, A., Vera, J. F., Heiser, W. (2005). A permutation-translation simulated annealing algorithm for L 1 and L 2 unidimensional scaling. Journal of Classification, 22, 119138.CrossRefGoogle Scholar
Oh, M.-S., Raftery, A. E. (2007). Model-based clustering with dissimilarities: a Bayesian approach. Journal of Computational and Graphical Statistics, 16, 559585.CrossRefGoogle Scholar
Ramsay, J. O. (1973). The effect of number of categories in rating scales on precision of estimation of scale values. Psychometrika, 38, 513532.CrossRefGoogle Scholar
Ramsay, J. O. (1977). Maximum likelihood estimation in multidimensional scaling. Psychometrika, 42, 241266.CrossRefGoogle Scholar
Ramsay, J. O. (1982). Some statistical approaches to multidimensional scaling data. Journal of the Royal Statistical Society A, 145, 285312.CrossRefGoogle Scholar
Ramsay, J. O. (1997). MULTISCALE manual (extended version), Montreal: McGill University.Google Scholar
Schwarz, G. (1978). Estimation the dimensions of a model. Annals of Statistics, 6, 461464.CrossRefGoogle Scholar
Seidel, W., Mosler, K., Alker, M. (2000). A cautionary note on likelihood ratio tests in mixture models. Annals of the Institute of Statistical Mathematics, 52, 481487.CrossRefGoogle Scholar
Selim, S. Z., Asultan, K. (1991). A Simulated Annealing algorithm for the clustering problem. Pattern Recognition, 24, 10031008.CrossRefGoogle Scholar
Sokal, R. R., Michener, C. D. (1958). A statistical method for evaluating systematic relationships. The University of Kansas Science Bulletin, 38, 14091438.Google Scholar
Sun, L. X., Xie, Y. L., Song, X. H., Wang, J. H., Yu, R. Q. (1994). Cluster analysis by simulated annealing. Computers and Chemistry, 18, 103108.CrossRefGoogle Scholar
Vera, J. F., Heiser, W., Murillo, A. (2007). Global optimization in any Minkowski metric: a permutation-translation simulated annealing algorithm for Multidimensional Scaling. Journal of Classification, 24, 277301.CrossRefGoogle Scholar
Vera, J. F., Macías, R., Angulo, J. M. (2008). Nonstationary spatial covariance structure estimation in oversampled domains by cluster differences scaling with spatial constraints. Stochastic Environmental Research and Risk Assessment, 22, 95106.CrossRefGoogle Scholar
Wedel, M., DeSarbo, W. (1996). An exponential-family multidimensional scaling mixture methodology. Journal of Business and Economical Statistics, 14, 447459.CrossRefGoogle Scholar
Winkler, G. (1995). Image analysis, random fields and dynamic Monte Carlo methods, New York: Springer.CrossRefGoogle Scholar
Winsberg, S., De Soete, G. (1993). A latent class approach to fitting the weighted Euclidean model. CLASCAL, Psychometrika, 58, 315330.CrossRefGoogle Scholar