Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T18:56:09.595Z Has data issue: false hasContentIssue false

Limited information estimation and testing of discretized multivariate normal structural models

Published online by Cambridge University Press:  01 January 2025

Albert Maydeu-Olivares*
Affiliation:
University of Barcelona
*
Requests for reprints should be sent to Albert Maydeu-Olivares, Faculty of Psychology, University of Barcelona, P. Valle de Hebrön, 171, 08035 Barcelona, Spain. E-mail: amaydeu@ub.edu

Abstract

Discretized multivariate normal structural models are often estimated using multistage estimation procedures. The asymptotic properties of parameter estimates, standard errors, and tests of structural restrictions on thresholds and polychoric correlations are well known. It was not clear how to assess the overall discrepancy between the contingency table and the model for these estimators. It is shown that the overall discrepancy can be decomposed into a distributional discrepancy and a structural discrepancy. A test of the overall model specification is proposed, as well as a test of the distributional specification (i.e., discretized multivariate normality). Also, the small sample performance of overall, distributional, and structural tests, as well as of parameter estimates and standard errors is investigated under conditions of correct model specification and also under mild structural and/or distributional misspecification. It is found that relatively small samples are needed for parameter estimates, standard errors, and structural tests. Larger samples are needed for the distributional and overall tests. Furthermore, parameter estimates, standard errors, and structural tests are surprisingly robust to distributional misspecification.

Type
Original Paper
Copyright
Copyright © 2006 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was supported by the Department of Universities, Research and Information Society (DURSI) of the Catalan Government, and by grants BSO2000-0661 and BSO2003-08507 of the Spanish Ministry of Science and Technology.

References

Agresti, A. (1990). Categorical data analysis, New York: Wiley.Google Scholar
Arminger, G., Wittenberg, J., & Schepers, A. (1996). MECOSA 3, Friedrichsdorf: Additive GmbH.Google Scholar
Bermann, G. (1993). Estimation and inference in bivariate and multivariate ordinal probit models. Acta Universitatis Upsaliensis. Studia Statistica Upsaliensia 1. Uppsala, Sweden.Google Scholar
Bock, R.D., & Aitkin, M. (1981). Marginal maximum likelihodd estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443459.CrossRefGoogle Scholar
Bock, R.D., & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 35, 179197.CrossRefGoogle Scholar
Box, G.E.P. (1954). Some theorems on quadratic forms applied in the study of analysis of variance problems: I. Effect of inequality of variance in the one-way classification. Annals of Mathematical Statistics, 25, 290302.CrossRefGoogle Scholar
Browne, M.W. (1984). Asymptotically distribution free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 6283.CrossRefGoogle ScholarPubMed
Chang, E.C., D’Zurilla, T.J., & Maydeu-Olivares, A. (1994). Assessing the dimensionality of optimism and pessimism using a multimeasure approach. Cognitive Therapy and Research, 18, 143160.CrossRefGoogle Scholar
Christoffersson, A., & Gunsjö, A. (1983). Analysis of structures for ordinal data (Research Report 83-2). Uppsala, Sweden: University of Uppsala, Department of Statistics.Google Scholar
Christoffersson, A., & Gunsjö, A. (1996). A short note on the estimation of the asymptotic covariance matrix for polychoric correlations. Psychometrika, 61, 173175.CrossRefGoogle Scholar
Gong, G., & Samaniego, F.J. (1981). Pseudo maximum likelihood estimation: Theory and applications. Annals of Statistics, 9, 861869.CrossRefGoogle Scholar
Gunsjö, A. (1994). Faktoranalys av ordinala variabler. Acta Universitas Upsaliensis. Studia Statistica Upsaliensia 2. Stockholm, Sweden: Almqvist & Wiksell.Google Scholar
Hamdan, M.A. (1970). The equivalence of tetrachoric and maximum likelihood estimates in 2 × 2 tables. Biometrika, 57, 212215.Google Scholar
Jöreskog, K.G. (1994). On the estimation of polychoric correlations and their asymptotic covariance matrix. Psychometrika, 59, 381390.CrossRefGoogle Scholar
Jöreskog, K.G., & Sörbom, D. (2001). LISREL 8, Chicago, IL: Scientific Software.Google Scholar
Küsters, U.L. (1987). Hierarchische Mittelwert- und Kovarianztrukturmodelle mit nichtmetrischen endogenen Variablen, Heidelberg: Physica-Verlag.CrossRefGoogle Scholar
Lee, S.Y., Poon, W.Y., & Bentler, P.M. (1995). A two-stage estimation of structural equation models with continuous and polytomous variables. British Journal of Mathematical and Statistical Psychology, 48, 339358.CrossRefGoogle ScholarPubMed
Mathai, A.M., & Provost, S.B. (1992). Quadratic forms in random variables. Theory and applications, New York: Marcel Dekker.Google Scholar
Maydeu-Olivares, A. (2001). Limited information estimation and testing of Thurstonian models for paired comparison data under multiple judgment sampling. Psychometrika, 66, 209228.CrossRefGoogle Scholar
Maydeu-Olivares, A., & Hernández, A. (2000). Some remarks on estimating a covariance structure from a sample correlation matrix. Working Paper. Statistics and Econometrics Series 00-62 (27). Universidad Carlos III de Madrid.Google Scholar
McDonald, R.P., & Mok, M.C. (1995). Goodness of fit in item response models. Multivariate Behavioral Research, 30, 2340.CrossRefGoogle Scholar
Moore, D.S. (1977). Generalized inverses, Wald’s method, and the construction of chi-squared tests of fit. Journal of the American Statistical Association, 72, 131137.CrossRefGoogle Scholar
Muthún, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551560.CrossRefGoogle Scholar
Muthún, B. (1982). Some categorical response models with continuous latent variables. In Jöreskog, K.G., & Wold, H. (Eds.), Systems under indirect observation (Vol. 1, pp. 6579). Amsterdam: North-Holland.Google Scholar
Muthún, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115132.CrossRefGoogle Scholar
Muthún, B. (1993). Goodness of fit with categorical and other non normal variables. In Bollen, K.A., & Long, J.S. (Eds.), Testing structural equation models (pp. 205234). Newbury Park, CA: Sage.Google Scholar
Muthún, B., Hofacker, C. (1988). Testing the assumptions underlying tetrachoric correlations. Psychometrika, 53, 563578.CrossRefGoogle Scholar
Muthún, L., & Muthún, B. (2001). MPLUS, Los Angeles, CA: Muthún & Muthún.Google Scholar
Muthún, B., & Satorra, A. (1995). Technical aspects of Muthún’s LISCOMP approach to estimation of latent variable relations with a comprehensive measurement model. Psychometrika, 60, 489503.CrossRefGoogle Scholar
Muthún, B., du Toit, S.H.C., & Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. Paper accepted for publication in Psychometrika.Google Scholar
Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44, 443460.CrossRefGoogle Scholar
Satorra, A. (1989). Alternative test criteria in covariance structure analysis: A unified approach. Psychometrika, 54, 131151.CrossRefGoogle Scholar
Satorra, A., & Bentler, P.M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In von, A., Clogg, C.C. (Eds.), Latent variable analysis: Applications to developmental research (pp. 399419). Thousand Oaks, CA: Sage.Google Scholar
Scheier, M.F., & Carver, C.S. (1985). Optimism, coping, and health: Assessment and implications of generalized outcome expectancies. Health Psychology, 4, 219247.CrossRefGoogle ScholarPubMed