Hostname: page-component-5f745c7db-f9j5r Total loading time: 0 Render date: 2025-01-06T07:11:47.011Z Has data issue: true hasContentIssue false

Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables

Published online by Cambridge University Press:  01 January 2025

Albert Maydeu-Olivares*
Affiliation:
University of Barcelona and Instituto De Empresa Business School
Harry Joe
Affiliation:
University of British Columbia
*
Requests for reprints should be sent to Albert Maydeu-Olivares. Faculty of Psychology, University of Barcelona. P. Valle de Hebrn, 171, 08035 Barcelona (Spain). E-mail: amaydeu@ub.edu

Abstract

We introduce a family of goodness-of-fit statistics for testing composite null hypotheses in multidimensional contingency tables. These statistics are quadratic forms in marginal residuals up to order r. They are asymptotically chi-square under the null hypothesis when parameters are estimated using any asymptotically normal consistent estimator. For a widely used item response model, when r is small and multidimensional tables are sparse, the proposed statistics have accurate empirical Type I errors, unlike Pearson’s X2. For this model in nonsparse situations, the proposed statistics are also more powerful than X2. In addition, the proposed statistics are asymptotically chi-square when applied to subtables, and can be used for a piecewise goodness-of-fit assessment to determine the source of misfit in poorly fitting models.

Type
Original Paper
Copyright
Copyright © 2007 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research has been supported by the Department of Universities, Research, and Information Society (DURSI) of the Catalan Government, by grant BSO2003-08507 of the Spanish Ministry of Science and Technology, and an NSERC Canada grant. We are grateful to the referees for comments leading to improvements.

References

Agresti, A. (2002). Categorical data analysis 2nd edn.,, New York: Wiley.CrossRefGoogle Scholar
Bartholomew, D.J., Knott, M. (1999). Latent variable models and factor analysis 2nd edn.,, London: Arnold.Google Scholar
Bartholomew, D.J., Leung, S.O. (2002). A goodness-of-fit test for sparse 2p contingency tables. British Journal of Mathematical and Statistical Psychology, 55, 115.CrossRefGoogle ScholarPubMed
Bartholomew, D.J., Tzamourani, P. (1999). The goodness of fit of latent trait models in attitude measurement. Sociolological Methods and Research, 27, 525546.CrossRefGoogle Scholar
Bentler, P.M. (1995). EQS, Encino, CA: Multivariate Software.Google Scholar
Bishop, Y.M.M., Fienberg, S.E., Holland, P.W. (1975). Discrete multivariate analysis, Cambridge, MA: MIT Press.Google Scholar
Bock, R.D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 2951.CrossRefGoogle Scholar
Bock, R.D., Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443459.CrossRefGoogle Scholar
Cai, L., Maydeu-Olivares, A., Coffman, D.L., Thissen, D. (2006). Limited information goodness of fit testing of item response theory models for sparse 2p tables. British Journal of Mathematical and Statistical Psychology, 59, 173194.CrossRefGoogle ScholarPubMed
Christoffersson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 532.CrossRefGoogle Scholar
Cochran, W.G. (1952). The X2 test of goodness of fit. Annals of Mathematical Statistics, 23, 315345.CrossRefGoogle Scholar
Collins, L.M., Fidler, P.L., Wugalter, S.E., Long, J. (1993). Goodness-of-fit testing for latent class models. Multivariate Behavioral Research, 28, 375389.CrossRefGoogle ScholarPubMed
Diener, E., Emmons, R.A., Larsen, R.J., Griffin, S. (1985). The Satisfaction with Life Scale. Journal of Personality Assessment, 49, 7175.CrossRefGoogle ScholarPubMed
Drasgow, F., Levine, M.V., Tsien, S., Williams, B., Mead, A. (1995). Fitting polytomous item response theory models to multiple-choice tests. Applied Psychological Measurement, 19, 143165.CrossRefGoogle Scholar
D’Zurilla, T.J., Nezu, A.M., Maydeu-Olivares, A. (2002). Manual of the social problem-solving inventory-Revised, North Tonawanda, NY: Multi-Health Systems.Google Scholar
Fraser, C., McDonald, R.P. (1988). NOHARM: Least squares item factor analysis. Multivariate Behavioral Research, 23, 267269.CrossRefGoogle ScholarPubMed
Glas, C.A.W. (1988). The derivation of some tests for the Rasch model from the multinomial distribution. Psychometrika, 53, 525546.CrossRefGoogle Scholar
Glas, C.A.W. (1999). Modification indices for the 2-PL and the nominal response model. Psychometrika, 64, 273294.CrossRefGoogle Scholar
Glas, C.A.W., Verhelst, N.D. (1989). Extensions of the partial credit model. Psychometrika, 54, 635659.CrossRefGoogle Scholar
Godambe, V.P. (1991). Estimating functions, Oxford: Oxford University Press.CrossRefGoogle Scholar
Joe, H. (1997). Multivariate models and dependence concepts, London: Chapman & Hall.Google Scholar
Jöreskog, K.G. (1994). On the estimation of polychoric correlations and their asymptotic covariance matrix. Psychometrika, 59, 381389.CrossRefGoogle Scholar
Jöreskog, K.G., Moustaki, I. (2001). Factor analysis of ordinal variables: A comparison of three approaches. Multivariate Behavioral Research, 36, 347387.CrossRefGoogle ScholarPubMed
Jöreskog, K.G., Sörbom, D. (2001). LISREL 8, Chicago: Scientific Software.Google Scholar
Koehler, K., Larntz, K. (1980). An empirical investigation of goodness-of-fit statistics for sparse multinomials. Journal of the American Statistical Association, 75, 336344.CrossRefGoogle Scholar
Kramp, U. (2006). Effects of the number of response options on personality rating scales. Unpublished doctoral dissertation. University of Barcelona.Google Scholar
Lee, S.Y., Poon, W.Y., Bentler, P.M. (1995). A two-stage estimation of structural equation models with continuous and polytomous variables. British Journal of Mathematical and Statistical Psychology, 48, 339358.CrossRefGoogle ScholarPubMed
Lord, F.M., Novick, M.R. (1968). Statistical theories of mental test scores, Reading, MA: Addison-Wesley.Google Scholar
Masters, G.N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149174.CrossRefGoogle Scholar
Maydeu-Olivares, A. (2001a). Limited information estimation and testing of Thurstonian models for paired comparison data under multiple judgment sampling. Psychometrika, 66, 209228.CrossRefGoogle Scholar
Maydeu-Olivares, A. (2001b). Multidimensional item response theory modeling of binary data: Large sample properties of NOHARM estimates. Journal of Educational and Behavioral Statistics, 26, 4969.CrossRefGoogle Scholar
Maydeu-Olivares, A. (2005). Further empirical results on parametric vs.non-parametric IRT modeling of Likert-type personality data. Multivariate Behavioral Research, 40, 275293.CrossRefGoogle ScholarPubMed
Maydeu-Olivares, A. (2006). Limited information estimation and testing of discretized multivariate normal structural models. Psychometrika, 71, 5777.CrossRefGoogle Scholar
Maydeu-Olivares, A., Joe, H. (2005). Limited and full information estimation and goodness-of-fit testing in 2n contingency tables: A unified framework. Journal of the American Statistical Association, 100, 10091020.CrossRefGoogle Scholar
Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551560.CrossRefGoogle Scholar
Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115132.CrossRefGoogle Scholar
Muthén, B. (1993). Goodness of fit with categorical and other nonnormal variables. In Bollen, K.A., Long, J.S. (Eds.), Testing structural equation models (pp. 205234). Newbury Park, CA: Sage.Google Scholar
Muthén, L., & Muthén, B. (2001). MPLUS. Los Angeles: Muthén & Muthén.Google Scholar
Rao, C.R. (1973). Linear statistical inference and its applications, New York: Wiley.CrossRefGoogle Scholar
Reiser, M. (1996). Analysis of residuals for the multinomial item response model. Psychometrika, 61, 509528.CrossRefGoogle Scholar
Reiser, M., Lin, Y. (1999). A goodness-of-fit test for the latent class model when expected frequencies are small. In Sobel, M., Becker, M. (Eds.), Sociological methodology 1999 (pp. 81111). Boston: Blackwell.Google Scholar
Reiser, M., VandenBerg, M. (1994). Validity of the chi-square test in dichotomous variable factor analysis when expected frequencies are small. British Journal of Mathematical and Statistical Psychology, 47, 85107.CrossRefGoogle Scholar
Samejima, F. (1969). Calibration of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, No. 17.Google Scholar
Schott, J.R. (1997). Matrix analysis for statistics, New York: Wiley.Google Scholar
Teugels, J.L. (1990). Some representations of the multivariate Bernoulli and binomial distributions. Journal of Multivariate Analysis, 32, 256268.CrossRefGoogle Scholar
Thissen, D., Steinberg, L. (1986). A taxonomy of item response models. Psychometrika, 51, 567577.CrossRefGoogle Scholar
Tollenaar, N., Mooijaart, A. (2003). Type I errors and power of the parametric bootstrap goodness-of-fit test: Full and limited information. British Journal of Mathematical and Statistical Psychology, 56, 271288.CrossRefGoogle ScholarPubMed
van der Linden, W.J., Hambleton, R.K. (1997). Handbook of modern item response theory, New York: Springer-Verlag.CrossRefGoogle Scholar
Zhao, Y., Joe, H. (2005). Composite likelihood estimation in multivariate data analysis. Canadian Journal of Statistics, 33, 335356.CrossRefGoogle Scholar