Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-07T18:42:44.019Z Has data issue: false hasContentIssue false

Loglinear Rasch models for the Analysis of Stability and Change

Published online by Cambridge University Press:  01 January 2025

Thorsten Meiser*
Affiliation:
University of Bonn
*
Requests for reprints should be sent to Thorsten Meiser, Psychologisches Institut der Universitfit Bonn, Römerstr. 164, D-53117 Bonn, GERMANY.

Abstract

Loglinear unidimensional and multidimensional Rasch models are considered for the analysis of repeated observations of polytomous indicators with ordered response categories. Reparameterizations and parameter restrictions are provided which facilitate specification of a variety of hypotheses about latent processes of change. Models of purely quantitative change in latent traits are proposed as well as models including structural change. A conditional likelihood ratio test is presented for the comparison of unidimensional and multiple scales Rasch models. In the context of longitudinal research, this renders possible the statistical test of homogeneity of change against subject-specific change in latent traits. Applications to two empirical data sets illustrate the use of the models.

Type
Original Paper
Copyright
Copyright © 1996 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author is greatly indebted to Ulf Böckenholt, Rolf Langeheine, and several anonymous reviewers for many helpful suggestions.

References

Agresti, A. (1993). Computing conditional maximum likelihood estimates for generalized Rasch models using simple loglinear models with diagonals parameters. Scandinavian Journal of Statistics, 20, 6371.Google Scholar
Andersen, E. B. (1980). Discrete statistical models with social science applications, Amsterdam: North-Holland.Google Scholar
Andersen, E. B. (1982). Latent structure analysis: A survey. Scandinavian Journal of Statistics, 9, 112.Google Scholar
Andersen, E. B. (1985). Estimating latent correlations between repeated testings. Psychometrika, 50, 316.CrossRefGoogle Scholar
Andersen, E. B. (1988). Comparison of latent structure models. In Langeheine, R., Rost, J. (Eds.), Latent trait and latent class models (pp. 207229). New York: Plenum Press.CrossRefGoogle Scholar
Andersen, E. B. (1990). The statistical analysis of categorical data, Berlin: Springer.CrossRefGoogle Scholar
Andersen, E. B. (1991). Longitudinal studies for discrete data based on latent structure models. In Magnusson, D., Bergman, L. R., Rudinger, G., Törestad, B. (Eds.), problems and methods in longitudinal research: Stability and change (pp. 308322). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561573.CrossRefGoogle Scholar
Bergman, L. R., Eklund, G., Magnusson, D. (1991). Studying individual development: Problems and methods. In Magnusson, D., Bergman, L. R., Rudinger, G., Törestad, B. (Eds.), Problems and methods in longitudinal research: Stability and change (pp. 127). Cambridge: Cambridge University Press.Google Scholar
Christensen, R. (1990). Log-linear models, New York: Springer.CrossRefGoogle Scholar
Clogg, C. C. (1988). Latent class models for measuring. In Langeheine, R., Rost, J. (Eds.), Latent trait and latent class models (pp. 173205). New York: Plenum Press.CrossRefGoogle Scholar
Cressie, N., Holland, P. W. (1983). Characterizing the manifest probabilities of latent trait models. Psychometrika, 48, 129141.CrossRefGoogle Scholar
Duncan, O. D. (1984). Rasch measurement: Further examples and discussion. In Turner, C. F., Martin, E. (Eds.), Surveying subjective phenomena, Vol. II (pp. 367403). New York: Russell Sage Foundation.Google Scholar
Embretson, S. E. (1991). A multidimensional latent trait model for measuring learning and change. Psychometrika, 56, 495515.CrossRefGoogle Scholar
Embretson, S. E. (1991). Implications of a multidimensional latent trait model for measuring change. In Collins, L. M., Horn, J. L. (Eds.), Best methods for the analysis of change: Recent advances, unanswered questions, future directions (pp. 184197). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Erdfelder, E. (1990). Deterministic developmental hypotheses, probabilistic rules of manifestation, and the analysis of finite mixture distributions. In von Eye, A. (Eds.), Statistical methods in longitudinal research. Vol. II: Time series and categorical longitudinal data (pp. 471509). New York: Academic Press.Google Scholar
Fischer, G. H. (1983). Logistic latent trait models with linear constraints. Psychometrika, 48, 326.CrossRefGoogle Scholar
Fischer, G. H. (1987). Applying the principles of specific objectivity and of generalizability to the measurement of change. Psychometrika, 52, 565587.CrossRefGoogle Scholar
Fischer, G. H. (1989). An IRT-based model for dichotomous longitudinal data. Psychometrika, 54, 599624.CrossRefGoogle Scholar
Fischer, G. H., Formann, A. K. (1982). Some applications of logistic latent trait models with linear constraints on the parameters. Applied Psychological Measurement, 6, 397416.CrossRefGoogle Scholar
Fischer, G. H., Parzer, P. (1991). An extension of the rating scale model with an application to the measurement of change. Psychometrika, 56, 637651.CrossRefGoogle Scholar
Fischer, G. H., Ponocny, I. (1994). An extension of the partial credit model with an application to the measurement of change. Psychometrika, 59, 177192.CrossRefGoogle Scholar
Goodman, L. A. (1990). Total-score models and Rasch-type models for the analysis of a multidimensional contingency table, or a set of multidimensional contingency tables, with specified and/or unspecified order for response categories. In Clogg, C. C. (Eds.), Sociological methodology 1990 (pp. 249294). Oxford: Black-well.Google Scholar
Haberman, S. J. (1978). Analysis of qualitative data. Volume 1: Introductory topics, New York: Academic Press.Google Scholar
Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika, 49, 223245.CrossRefGoogle Scholar
Kelderman, H. (1988). Common item equating using the loglinear Rasch model. Journal of Educational Statistics, 13, 319336.CrossRefGoogle Scholar
Kelderman, H. (1989). Item bias detection using loglinear IRT. Psychometrika, 54, 681697.CrossRefGoogle Scholar
Kelderman, H. (1992). Computing maximum likelihood estimates of loglinear models from marginal sums with special attention to loglinear Item Response Theory. Psychometrika, 57, 437450.CrossRefGoogle Scholar
Kelderman, H. (1993). Estimating and testing a multidimensional Rasch model for partial credit scoring of children's application of size concepts. In Steyer, R., Wender, K. F., Widaman, K. F. (Eds.), Psychometric methodology. Proceedings of the 7th European meeting of the Psychometric Society in Trier (pp. 209212). Stuttgart: Fischer.Google Scholar
Kelderman, H., Macready, G. B. (1990). The use of loglinear models for assessing differential item functioning across manifest and latent examinee groups. Journal of Educational Measurement, 27, 307327.CrossRefGoogle Scholar
Kelderman, H., Rijkes, C. P. M. (1994). Loglinear multidimensional IRT models for polytomously scored items. Psychometrika, 59, 149176.CrossRefGoogle Scholar
Langeheine, R. (1993). Diagnosing incremental learning: Some probabilistic models for measuring change and testing hypotheses about growth. Studies in Educational Evaluation, 19, 349362.CrossRefGoogle Scholar
Langeheine, R., van de Pol, F. (1990). Veränderungsmessung bei kategorialen Daten [Measurement of change in categorical data]. Zeitschrift für Sozialpsychologie, 21, 88100.Google Scholar
Lazarsfeld, P. F., Henry, N. W. (1968). Latent structure analysis, Boston: Houghton Mifflin.Google Scholar
Little, R. J. A., Rubin, D. B. (1987). Statistical analysis with missing data, New York: Wiley.Google Scholar
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149174.CrossRefGoogle Scholar
Masters, G. N. (1985). A comparison of latent trait and latent class analyses of Likert-type data. Psychometrika, 50, 6982.CrossRefGoogle Scholar
Masters, G. N. (1988). Measurement models for ordered response categories. In Lanngeheine, R., Rost, J. (Eds.), Latent trait and latent class models (pp. 1130). New York: Plenum Press.CrossRefGoogle Scholar
Rindskopf, D. (1984). Linear equality restrictions and loglinear models. Psychological Bulletin, 96, 597603.CrossRefGoogle Scholar
Rindskopf, D. (1990). Nonstandard log-linear models. Psychological Bulletin, 108, 150162.CrossRefGoogle Scholar
Rost, J. (1988). Test theory with qualitative and quantitative latent variables. In Langeheine, R., Rost, J. (Eds.), Latent trait and latent class models (pp. 147172). New York: Plenum Press.CrossRefGoogle Scholar
Rost, J. (1989). Rasch models and latent class models for measuring change with ordinal variables. In Coppi, R., Bolasco, S. (Eds.), Multiway data analysis (pp. 473483). Amsterdam: North Holland.Google Scholar
Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271282.CrossRefGoogle Scholar
Rost, J. (1991). A logistic mixture distribution model for polychotomous item responses. British Journal of Mathematical and Statistical Psychology, 44, 7592.CrossRefGoogle Scholar
Rost, J., Spada, H. (1983). Die Quantifizierung von Lerneffekten anhand von Testdaten [The quantification of learning effects with test data]. Zeitschrift für Differentielle und Diagnostische Psychologie, 4, 2949.Google Scholar
SAS Institute (1988). SAS/STAT user's guide, release 6.03 edition, Cary, NC: Author.Google Scholar
Schröder, E., Edelstein, W., Hoppe-Graff, S. (1991). Qualitative analyses of individual differences in intraindividual change: Examples from cognitive development. In Magnusson, D., Bergman, L. R., Rudinger, G., Törestad, B. (Eds.), Problems and methods in longitudinal research: Stability and change (pp. 166189). New York: Cambridge University Press.CrossRefGoogle Scholar
Spada, H., McGaw, B. (1985). The assessment of learning effects with linear logistic test models. In Embretson, S. (Eds.), Test design: Developments in psychology and psychometrics (pp. 169194). Orlando: Academic Press.CrossRefGoogle Scholar
Stegelmann, W. (1983). Expanding the Rasch model to a general model having more than one dimension. Psychometrika, 48, 259267.CrossRefGoogle Scholar
Thomae, H. (1965). Objective socialization variables and personality development. Findings from a longitudinal study. Human Development, 8, 87116.CrossRefGoogle ScholarPubMed
Tjur, T. (1982). A connection between Rasch's item analysis model and a multiplicative Poisson model. Scandinavian Journal of Statistics, 9, 2330.Google Scholar
Winship, C., Mare, R. D. (1989). Loglinear models with missing data: A latent class approach. In Clogg, C. C. (Eds.), Sociological Methodology 1989 (pp. 331367). Oxford: Blackwell.Google Scholar