Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-07T18:16:18.471Z Has data issue: false hasContentIssue false

A Maximin Model for Test Design with Practical Constraints

Published online by Cambridge University Press:  01 January 2025

Wim J. van ver Linden*
Affiliation:
University of Twente
Ellen Boekkooi-Timminga
Affiliation:
University of Twente
*
Requests for reprints should be sent to W. J. van der Linden, University of Twente, Department of Education, PO Box 217, 7500 AE Enschede, THE NETHERLANDS.

Abstract

A maximin model for IRT-based test design is proposed. In the model only the relative shape of the target test information function is specified. It serves as a constraint subject to which a linear programming algorithm maximizes the information in the test. In the practice of test construction, several demands as linear constraints in the model. A worked example of a text construction problem with practical constraints is presented. The paper concludes with a discussion of some alternative models of test construction.

Type
Original Paper
Copyright
Copyright © 1989 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors are indebted to Jos J. Adea for suggesting Equation 17 as a Simplification of an earlier version of this constraint. This research was suuorted in part by a grant from the Dutch Organization for Research (NWO) through the Foundation for Psychological and Psychonomic Research in the Netherlands (Psychon).

References

Anthonisse, J. M. (1984). Linprog, Amsterdam: Centre for Mathematics and Computer Science CWI.Google Scholar
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In Lord, F. M., Novick, M. R. (Eds.), Statistical theories of mental test scores (pp. 379397). Reading, MA: Addison-Wesley.Google Scholar
Boekkooi-Timminga, E. (1987). Simultaneous test construction by zero-one programming. Mehtodika, 1, 101112.Google Scholar
Boekkooi-Timminga, E., van der Linden, W. J. (1987). Algroithms for automated test construction. In Maarse, F. J., Mulder, L. J. M., Sjouw, W. P. B., Akker, A. E. (Eds.), Computers in psychology: Methods, instrumentation and psychodiagnostics (pp. 165170). Lisses: Swets & Zeitlinger.Google Scholar
Dantzig, G. (1957). Discrete-variable extremum problems. Operations Research, 5, 266277.CrossRefGoogle Scholar
Kelderman, H. (1987). Some procedures to assess target information functions. In van der Linden, W. J. (Eds.), IRT-based test construction, Enschede: University of Twente, Department of Education.Google Scholar
Lord, F. M. (1980). Applications of item response theroy to practical testing problems, Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Pandey, T. N. (1986). State of the art of large-scale assessment in the United States. In van der Linden, W. J., Wijnstra, J. M. (Eds.), Ontwikkelingen in de methodologie van het onderzoek [Developments in the methodology of educational research] (pp. 525). Lisse: Swets &Zeitlinger.Google Scholar
Rao, S. S. (1985). Optimization: Theory and applications 2nd Ed.,, New Delhi: Wiley Eastern.Google Scholar
Rasch, G. (1960). Probabilistic models for soem intelligence and attainment tests, Copenhagen: Denmark Paedagogiske Institut.Google Scholar
Theunissen, G. J. J. M. (1985). Binary programming and test design. Psychometrika, 50, 411420.CrossRefGoogle Scholar
Theunissen, T. J. J. M. (1986). Optimization algorithms in test design. Applied Psychological Measuremetn, 10, 381389.CrossRefGoogle Scholar
Theunissen, T. J. J. M., Verstralen, H. H. F. M. (1986). Algoritmen voor het samenstellen van toetsen [Algorithms for constructin tests]. In van der Linden, W. J. (Eds.), Moderne methoden voor toetsconstructie en -gebruik (pp. 3239). Lisse: Swets & Zeitlinger.Google Scholar
Timminga, E. (1985). Geautomatiseered toetsontwerp: Itemselectie m.b.v. binair programmeren, Enschede, The Netherlands: Uniersity of Twente.Google Scholar
van der Linden, W. J. (1987). Automated test construction using minimax programming. In van der Linden, W. J. (Eds.), IRT-based test construction, Enschede: University of Twente, Department of Education.Google Scholar
van der Linden, W. J., Boekkooi-Timminga, E. (1988). A zero-one programming approach to Gulliksen's matched random subtests method. Applied Psychological Measurement, 12, 201209.CrossRefGoogle Scholar
Wagner, H. M. (1975). Principles of operations reserarch, London: Prentice-Hall.Google Scholar
Yen, W. M. (1983). use of the three-parmeter model in the development of a standardized achievement test. In Hambleton, R. K. (Eds.), Applications of item response theory (pp. 123141). Vancouver: Educational Research Institute of British Columbia.Google Scholar