Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T15:52:37.683Z Has data issue: false hasContentIssue false

Modeling Differences in the Dimensionality of Multiblock Data by Means of Clusterwise Simultaneous Component Analysis

Published online by Cambridge University Press:  01 January 2025

Kim De Roover*
Affiliation:
KU Leuven
Eva Ceulemans
Affiliation:
KU Leuven
Marieke E. Timmerman
Affiliation:
University of Groningen
John B. Nezlek
Affiliation:
College of William & Mary University of Social Sciences and Humanities, Faculty in Poznań
Patrick Onghena
Affiliation:
KU Leuven
*
Requests for reprints should be sent to Kim De Roover, Methodology of Educational Sciences Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Andreas Vesaliusstraat 2, 3000 Leuven, Belgium. E-mail: Kim.DeRoover@ppw.kuleuven.be

Abstract

Given multivariate multiblock data (e.g., subjects nested in groups are measured on multiple variables), one may be interested in the nature and number of dimensions that underlie the variables, and in differences in dimensional structure across data blocks. To this end, clusterwise simultaneous component analysis (SCA) was proposed which simultaneously clusters blocks with a similar structure and performs an SCA per cluster. However, the number of components was restricted to be the same across clusters, which is often unrealistic. In this paper, this restriction is removed. The resulting challenges with respect to model estimation and selection are resolved.

Type
Original Paper
Copyright
Copyright © 2013 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716723.CrossRefGoogle Scholar
Barrett, L.F. (1998). Discrete emotions or dimensions? The role of valence focus and arousal focus. Cognition and Emotion, 12, 579599.CrossRefGoogle Scholar
Brusco, M.J., & Cradit, J.D. (2001). A variable selection heuristic for K-means clustering. Psychometrika, 66, 249270.CrossRefGoogle Scholar
Brusco, M.J., & Cradit, J.D. (2005). ConPar: a method for identifying groups of concordant subject proximity matrices for subsequent multidimensional scaling analyses. Journal of Mathematical Psychology, 49, 142154.CrossRefGoogle Scholar
Cattell, R.B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245276.CrossRefGoogle ScholarPubMed
Ceulemans, E., & Kiers, H.A.L. (2006). Selecting among three-mode principal component models of different types and complexities: a numerical convex hull based method. British Journal of Mathematical & Statistical Psychology, 59, 133150.CrossRefGoogle ScholarPubMed
Ceulemans, E., & Kiers, H.A.L. (2009). Discriminating between strong and weak structures in three-mode principal component analysis. British Journal of Mathematical & Statistical Psychology, 62, 601620.CrossRefGoogle ScholarPubMed
Ceulemans, E., Timmerman, M.E., & Kiers, H.A.L. (2011). The CHULL procedure for selecting among multilevel component solutions. Chemometrics and Intelligent Laboratory Systems, 106, 1220.CrossRefGoogle Scholar
Ceulemans, E., & Van Mechelen, I. (2005). Hierarchical classes models for three-way three-mode binary data: interrelations and model selection. Psychometrika, 70, 461480.CrossRefGoogle Scholar
Cohen, J. (1973). Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educational and Psychological Measurement, 33, 107112.CrossRefGoogle Scholar
De Roover, K., Ceulemans, E., & Timmerman, M.E. (2012). How to perform multiblock component analysis in practice. Behavior Research Methods, 44, 4156.CrossRefGoogle ScholarPubMed
De Roover, K., Ceulemans, E., Timmerman, M.E., & Onghena, P. (2012). A clusterwise simultaneous component method for capturing within-cluster differences in component variances and correlations. British Journal of Mathematical & Statistical Psychology. doi:10.1111/j.2044-8317.2012.02040.x. Advance online publication.Google ScholarPubMed
De Roover, K., Ceulemans, E., Timmerman, M.E., Vansteelandt, K., Stouten, J., & Onghena, P. (2012). Clusterwise simultaneous component analysis for the analysis of structural differences in multivariate multiblock data. Psychological Methods, 17, 100119.CrossRefGoogle ScholarPubMed
Diaz-Loving, R. (1998). Contributions of Mexican ethnopsychology to the resolution of the etic-emic dilemma in personality. Journal of Cross-Cultural Psychology, 29, 104118.CrossRefGoogle Scholar
Feningstein, A., Scheier, M.F., & Buss, A. (1975). Public and private self-consciousness. Journal of Consulting and Clinical Psychology, 43, 522527.CrossRefGoogle Scholar
Goldberg, L.R. (1990). An alternative “description of personality”: the Big-Five factor structure. Journal of Personality and Social Psychology, 59, 12161229.CrossRefGoogle ScholarPubMed
Hands, S., & Everitt, B. (1987). A Monte Carlo study of the recovery of cluster structure in binary data by hierarchical clustering techniques. Multivariate Behavioral Research, 22, 235243.CrossRefGoogle Scholar
Hoerl, A.E. (1962). Application of ridge analysis to regression problems. Chemical Engineering Progress, 58, 5459.Google Scholar
Hofmans, J., Ceulemans, E., Steinley, D., & Van Mechelen, I. (2012). On the added value of bootstrap analysis for K-means clustering. Manuscript conditionally accepted.Google Scholar
Jolliffe, I.T. (1986). Principal component analysis. New York: Springer.CrossRefGoogle Scholar
Kaiser, H.F. (1958). The Varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200.CrossRefGoogle Scholar
Kiers, H.A.L. (1990). SCA. A program for simultaneous components analysis of variables measured in two or more populations. Groningen: iec ProGAMMA.Google Scholar
Kiers, H.A.L., & ten Berge, J.M.F. (1994). Hierarchical relations between methods for Simultaneous Components Analysis and a technique for rotation to a simple simultaneous structure. British Journal of Mathematical & Statistical Psychology, 47, 109126.CrossRefGoogle Scholar
McLachlan, G.J., & Peel, D. (2000). Finite mixture models. New York: Wiley.CrossRefGoogle Scholar
Meredith, W., & Millsap, R.E. (1985). On component analyses. Psychometrika, 50, 495507.CrossRefGoogle Scholar
Milligan, G.W., Soon, S.C., & Sokol, L.M. (1983). The effect of cluster size, dimensionality, and the number of clusters on recovery of true cluster structure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5, 4047.CrossRefGoogle ScholarPubMed
Nezlek, J.B. (2005). Distinguishing affective and non-affective reactions to daily events. Journal of Personality, 73, 15391568.CrossRefGoogle ScholarPubMed
Nezlek, J.B. (2012). Diary methods for social and personality psychology. In Nezlek, J.B. The SAGE library in social and personality psychology methods. London: Sage Publications.CrossRefGoogle Scholar
Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2, 559572.Google Scholar
Robert, P., & Escoufier, Y. (1976). A unifying tool for linear multivariate statistical methods: the RV-coefficient. Applied Statistics, 25, 257265.CrossRefGoogle Scholar
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461464.CrossRefGoogle Scholar
Selim, S.Z., & Ismail, M.A. (1984). K-means-type algorithms: a generalized convergence theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 8187.CrossRefGoogle ScholarPubMed
Smilde, A.K., Kiers, H.A.L., Bijlsma, S., Rubingh, C.M., & van Erk, M.J. (2009). Matrix correlations for high-dimensional data: the modified RV-coefficient. Bioinformatics, 25, 401405.CrossRefGoogle ScholarPubMed
Steinley, D. (2003). Local optima in K-means clustering: what you don’t know may hurt you. Psychological Methods, 8, 294304.CrossRefGoogle ScholarPubMed
ten Berge, J.M.F. (1993). Least squares optimization in multivariate analysis. Leiden: DSWO Press.Google Scholar
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B (Methodological), 58, 267288.CrossRefGoogle Scholar
Timmerman, M.E., Ceulemans, E., Kiers, H.A.L., & Vichi, M. (2010). Factorial and reduced K-means reconsidered. Computational Statistics & Data Analysis, 54, 18581871.CrossRefGoogle Scholar
Timmerman, M.E., & Kiers, H.A.L. (2000). Three-mode principal component analysis: choosing the numbers of components and sensitivity to local optima. British Journal of Mathematical & Statistical Psychology, 53, 116.CrossRefGoogle Scholar
Timmerman, M.E., & Kiers, H.A.L. (2003). Four simultaneous component models of multivariate time series from more than one subject to model intraindividual and interindividual differences. Psychometrika, 86, 105122.CrossRefGoogle Scholar
Timmerman, M.E., Kiers, H.A.L., Smilde, A.K., Ceulemans, E., & Stouten, J. (2009). Bootstrap confidence intervals in multi-level simultaneous component analysis. British Journal of Mathematical & Statistical Psychology, 62, 299318.CrossRefGoogle ScholarPubMed
Trapnell, P.D., & Campbell, J.D. (1999). Private self-consciousness and the five factor model of personality: distinguishing rumination from reflection. Journal of Personality and Social Psychology, 76, 284304.CrossRefGoogle ScholarPubMed
Tugade, M.M., Fredrickson, B.L., & Barrett, L.F. (2004). Psychological resilience and positive emotional granularity: examining the benefits of positive emotions on coping and health. Journal of Personality, 72, 11611190.CrossRefGoogle ScholarPubMed
Van Deun, K., Wilderjans, T.F., van den Berg, R.A., Antoniadis, A., & Van Mechelen, I. (2011). A flexible framework for sparse simultaneous component based data integration. BMC Bioinformatics, 12, 448.CrossRefGoogle ScholarPubMed
Van Mechelen, I., & Smilde, A.K. (2010). A generic linked-mode decomposition model for data fusion. Chemometrics and Intelligent Laboratory Systems, 104, 8394.CrossRefGoogle Scholar
Wilderjans, T.F., Ceulemans, E., Van Mechelen, I., & van den Berg, R.A. (2011). Simultaneous analysis of coupled data matrices subject to different amounts of noise. British Journal of Mathematical & Statistical Psychology, 64, 277290.CrossRefGoogle ScholarPubMed
Yung, Y.F. (1997). Finite mixtures in confirmatory factor-analysis models. Psychometrika, 62, 297330.CrossRefGoogle Scholar