Hostname: page-component-5f745c7db-6bmsf Total loading time: 0 Render date: 2025-01-06T07:16:24.917Z Has data issue: true hasContentIssue false

A New Heterogeneous Multidimensional Unfolding Procedure

Published online by Cambridge University Press:  01 January 2025

Joonwook Park*
Affiliation:
Southern Methodist University
Priyali Rajagopal
Affiliation:
Southern Methodist University
Wayne S. DeSarbo
Affiliation:
Pennsylvania State University
*
Requests for reprints should be sent to Joonwook Park, Cox Business School, Southern Methodist University, Dallas, TX 75275, USA. E-mail: jpark@cox.smu.edu

Abstract

A variety of joint space multidimensional scaling (MDS) methods have been utilized for the spatial analysis of two- or three-way dominance data involving subjects’ preferences, choices, considerations, intentions, etc. so as to provide a parsimonious spatial depiction of the underlying relevant dimensions, attributes, stimuli, and/or subjects’ utility structures in the same joint space representation. We demonstrate that care must be taken with respect to a key assumption in existent joint space MDS models such that all estimated dimensions are utilized by each and every subject in the sample, as this assumption can lead to serious distortions with respect to the derived joint spaces. We develop a new Bayesian dimension selection methodology for the multidimensional unfolding model which accommodates heterogeneity with respect to such dimensional utilization at the individual subject level for the analysis of two or three-way dominance data. A consumer psychology application regarding the preference for Over-the-Counter (OTC) analgesics is provided. We conclude by discussing the practical implications of the results, as well as directions for future research.

Type
Original Paper
Copyright
Copyright © 2012 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alba, J.W., Hutchinson, J.W. (1987). Dimensions of consumer expertise. Journal of Consumer Research, 13, 411454CrossRefGoogle Scholar
Baumgartner, H., Steenkamp, J.E.M. (2001). Response styles in marketing research: A cross-national investigation. Journal of Marketing Research, 38, 143156CrossRefGoogle Scholar
Benzécri, J.P. (1973). L’analyse des données: Tome II. Analyse de correspondances, Paris: DunodGoogle Scholar
Benzécri, J.P. (1992). Correspondence analysis handbook, New York: DekkerCrossRefGoogle Scholar
Bettman, J.R., Luce, M.F., Payne, J.W. (1998). Constructive consumer choice processes. Journal of Consumer Research, 25, 187217CrossRefGoogle Scholar
Borg, I., Groenen, P.J.F. (2005). Modern multidimensional scaling: Theory & application, (2rd ed.). New York: SpringerGoogle Scholar
Bradlow, E.T., Schmittlein, D.C. (2000). The little engines that could: Modeling the performance of world wide web search engines. Marketing Science, 19(1), 4362CrossRefGoogle Scholar
Brucks, M. (1985). The effects of product class knowledge on information search behavior. Journal of Consumer Research, 12, 116CrossRefGoogle Scholar
Busing, F.M.T.A., Groenen, P.J.F., Heiser, W.J. (2005). Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation. Psychometrika, 70, 7198CrossRefGoogle Scholar
Carlin, B.P., Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo. Journal of the Royal Statistical Society, Series B, 57(3), 473484CrossRefGoogle Scholar
Carroll, J.D. (1972). Individual differences and multidimensional scaling. In Shepard, R.N., Romney, A.K., Nerlove, S. Multidimensional scaling: Theory & applications in the behavior sciences: Theory, New York: Seminar Press 105155Google Scholar
Carroll, J.D. (1980). Models and methods for multidimensional analysis of preferential choice (or other dominance) data. In Lantermann, E.D., Feger, H. Similarity and choice, Vienna: Hans Huber Publishers 234289Google Scholar
Carroll, J.D., Arabie, P. (1980). Multidimensional scaling. Annual Review of Psychology, 31, 607649CrossRefGoogle ScholarPubMed
Chib, S. (2002). Markov chain Monte Carlo methods. In Press, S.J. Subjective and objective Bayesian statistics, (2rd ed.). New York: Wiley 119171Google Scholar
Chintagunta, P.K. (1994). Heterogeneous logit model implications for brand positioning. Journal of Marketing Research, 31(2), 304311CrossRefGoogle Scholar
Churchill, G.A., Peter, J.P. (1984). Research design effects on the reliability of rating scales: A meta analysis. Journal of Marketing Research, 21(4), 360375CrossRefGoogle Scholar
Coombs, C.H. (1960). A theory of data. Psychological Review, 67(3), 143159CrossRefGoogle ScholarPubMed
Cox, T.F., Cox, M.A. (2001). Multidimensional scaling, (2rd ed.). London: Chapman & HallGoogle Scholar
DeSarbo, W.S., Carroll, J.D. (1985). Three-way metric unfolding via weighted least-squares. Psychometrika, 50, 275300CrossRefGoogle Scholar
DeSarbo, W.S., Hoffman, D. (1986). Simple and weighted unfolding MDS threshold models for the spatial analysis of binary data. Applied Psychological Measurement, 10, 247264CrossRefGoogle Scholar
DeSarbo, W.S., Kim, Y., Fong, D.K.H. (1999). A Bayesian multidimensional scaling procedure for the spatial analysis of revealed choice data. Journal of Econometrics, 89(1–2), 79108CrossRefGoogle Scholar
DeSarbo, W.S., Kim, Y., Wedel, M., Fong, D.K.H. (1998). A Bayesian approach to the spatial representation of market structure from consumer choice data. European Journal of Operational Research, 111(2), 285305CrossRefGoogle Scholar
DeSarbo, W.S., Rao, V.R. (1984). GENFOLD2: A set of models and algorithms for the GENeral UnFOLDing analysis of preference/dominance data. Journal of Classification, 2, 147168CrossRefGoogle Scholar
DeSarbo, W.S., Rao, V.R. (1986). A constrained unfolding methodology for product positioning. Marketing Science, 5(1), 119CrossRefGoogle Scholar
DeSarbo, W.S., Young, M.R., Rangaswamy, A. (1997). A parametric multidimensional unfolding procedure for incomplete nonmetric preference/choice set data in marketing research. Journal of Marketing Research, 34, 499516CrossRefGoogle Scholar
Diebolt, J., Robert, C.P. (1994). Estimation of finite mixture distributions through Bayesian sampling. Journal of the Royal Statistical Society, Series B, 56(2), 363375CrossRefGoogle Scholar
Elrod, T. (1988). Choice map: Inferring a product-market map from panel data. Marketing Science, 7(1), 2140CrossRefGoogle Scholar
Elrod, T., Keane, M.P. (1995). A factor-analytic model for representing the market structure in panel data. Journal of Marketing Research, 32, 116CrossRefGoogle Scholar
Erdem, T. (1996). A dynamic analysis of market structure based on panel data. Marketing Science, 15(4), 359378CrossRefGoogle Scholar
Feldman, J.M., Lynch, J.G. (1988). Self-generated validity and other effects of measurement on belief, attitude, intention, and behavior. Journal of Applied Psychology, 73(3), 421435CrossRefGoogle Scholar
Fong, D.K.H., DeSarbo, W.S., Park, J., Scott, C.J. (2010). A Bayesian vector multidimensional scaling procedure for the analysis of ordered preference data. Journal of the American Statistical Society, 105(490), 482492CrossRefGoogle Scholar
Friedman, H.H., Friedman, L.W., Gluck, B. (1988). The effects of scale-checking styles on responses to a semantic differential scale. Journal of the Market Research Society, 30(4), 477481Google Scholar
Gelfand, A.E., Smith, A.F.M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398409CrossRefGoogle Scholar
Gelman, A., Gilks, W.R., Roberts, G.O. (1996). Efficient Metropolis jumping rules, Oxford: Oxford University PressCrossRefGoogle Scholar
George, E.I., McCulloch, R.E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88, 881889CrossRefGoogle Scholar
George, E.I., McCulloch, R.E. (1997). Approaches for Bayesian variable selection. Statistica Sinica, 7(2), 339373Google Scholar
George, E.I., McCulloch, R.E., Tsay, R.S. (1995). Two approaches to Bayesian model selection with applications. In Berry, D., Chaloner, K., Geweke, J. Bayesian statistics and econometrics: Essays in honor of Arnold Zellner, New York: Wiley 339348Google Scholar
Geweke, J. (1996). Monte Carlo simulation and numerical integration. In Amman, H.M., Kendrick, D.A., Rust, J. Handbook of computational economics, New York: Elsevier 731800Google Scholar
Gifi, A. (1990). Nonlinear multivariate analysis, New York: WileyGoogle Scholar
Gilbride, T.J., Allenby, G.M., Brazell, J.D. (2006). Models for heterogeneous variable selection. Journal of Marketing Research, 43(3), 420430CrossRefGoogle Scholar
Greenacre, M.J. (1984). Theory and applications of correspondence analysis, New York: Academic PressGoogle Scholar
Greenacre, M.J., Browne, M.W. (1986). An efficient alternating least-squares algorithm to perform multidimensional unfolding. Psychometrika, 51, 241250CrossRefGoogle Scholar
Harshman, R.A., Lundy, M.E. (1984). Data preprocessing and the extended PARAFAC model. In Law, H.G., Snyder, C.W., Hattie, J.A., McDonald, R.P. Research methods for multimode data analysis, New York: Praeger 216284Google Scholar
Harshman, R.A., & Lundy, M.E. (1985). The preprocessing controversy: An exchange of papers between Kroonenberg, Harshman and Lundy (Technical Report). London, Ontario: University of Western Ontario, Department of Psychology. Google Scholar
Heiser, W.J. (1981). Unfolding analysis of proximity data (Unpublished doctoral dissertation). University of Leiden. Google Scholar
Heiser, W.J. (1989). The city-block model for three-way multidimensional scaling. In Coppi, R., Bolasco, S. Multiway data analysis, Amsterdam: North-Holland 395404Google Scholar
Houston, D.A., Sherman, S.J. (1995). Cancellation and focus: The role of shared and unique features in the choice process. Journal of Experimental Social Psychology, 31(4), 357378CrossRefGoogle Scholar
Hutchinson, W.J., Alba, J.W. (1991). Ignoring irrelevant information: Situational determinants of consumer learning. Journal of Consumer Research, 18, 325345CrossRefGoogle Scholar
Isen, A.M. (1993). Positive affect and decision making. In Lewis, M., Haviland, J. Handbook of emotions, New York: Guilford 261273Google Scholar
Isen, A.M., Daubman, K.A., Nowicki, G.P. (1987). Positive affect facilitates creative problem solving. Journal of Personality and Social Psychology, 52(6), 11221131CrossRefGoogle ScholarPubMed
Johnson, K.E., Mervis, C.B. (1997). Effects of varying levels of expertise on the basic level of categorization. Journal of Experimental Psychology: General, 126, 248277CrossRefGoogle ScholarPubMed
Kass, R.E., Raftery, A.E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773795CrossRefGoogle Scholar
Kunda, Z. (1990). The case for motivated reasoning. Psychological Bulletin, 108, 480498CrossRefGoogle ScholarPubMed
Kruskal, J.B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 127CrossRefGoogle Scholar
Kruskal, J.B. (1964). Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29, 115129CrossRefGoogle Scholar
Kruskal, J.B., Carroll, J.D. (1969). Geometric models and badness of fit functions. In Krishnaiah, P.R. Multivariate analysis, New York: Academic PressGoogle Scholar
Kuo, L., Mallick, B. (1988). Variable selection for regression models. Sankhya: The Indian Journal of Statistics, Series B, 60, 6581Google Scholar
Lingoes, J.C. (1972). A general survey of the Guttman–Lingoes nonmetric program series. In Shepard, R.N., Romney, A.K., Nerlove, S. Theory and applications in the behavior sciences: Theory, New York: Seminar Press 4968Google Scholar
Lingoes, J.C. (1973). The Guttman–Lingoes nonmetric program series, Ann Arbor: Mathesis PressGoogle Scholar
Miller, K.E., Ginter, J.L. (1979). An investigation of situational variation in brand choice behavior and attitude. Journal of Marketing Research, 16, 11123CrossRefGoogle Scholar
Mitchell, T.J., Beauchamp, J.J. (1988). Bayesian variable selection in linear regression. Journal of the American Statistical Association, 83, 10231032CrossRefGoogle Scholar
Newton, M.A., Raftery, A.E. (1994). Approximate Bayesian inference with the weighted likelihood bootstrap. Journal of the Royal Statistical Society, Series B, 56, 348CrossRefGoogle Scholar
Nishisato, S. (1980). Analysis of categorical data: Dual scaling and its applications, Toronto: University of Toronto PressCrossRefGoogle Scholar
Okada, K., Shigemasu, K. (2009). BMDS: A collection of R functions for Bayesian multidimensional scaling. Applied Psychological Measurement, 33(7), 570571CrossRefGoogle Scholar
Oh, M., Raftery, A.E. (2001). Bayesian multidimensional scaling and choice of dimension. Journal of the American Statistical Association, 96(455), 10311044CrossRefGoogle Scholar
Park, J., DeSarbo, W.S., Liechty, J. (2008). A hierarchical Bayesian multidimensional scaling methodology for accommodating both structural and preference heterogeneity. Psychometrika, 73, 451472CrossRefGoogle Scholar
Payne, J.W., Bettman, J.R., Johnson, E. (1993). The adaptive decision maker, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Payne, J.W., Bettman, J.R., Luce, M.F. (1996). When time is money: Decision behavior under opportunity-cost time pressure. Organizational Behavior and Human Decision Processes, 66, 131152CrossRefGoogle Scholar
Petty, R.E., Cacioppo, J.T. (1986). Communication and persuasion: Central and peripheral routes to attitude change, New York: SpringerCrossRefGoogle Scholar
Petty, R.E., Cacioppo, J.T., Goldman, R. (1981). Personal involvement as a determinant of argument based persuasion. Journal of Personality and Social Psychology, 41, 847855CrossRefGoogle Scholar
Petty, R.E., Cacioppo, J.T., Schumann, D. (1983). Central and peripheral routes for advertising effectiveness: The moderating role of involvement. Journal of Consumer Research, 10, 135144CrossRefGoogle Scholar
Roskam, E.E. (1973). Fitting ordinal relational data to a hypothesized structure (Technical Report No. 73MA06). Nijmegen: Catholic University. Google Scholar
Schönemann, P.H. (1970). On metric multidimensional unfolding. Psychometrika, 35, 349366CrossRefGoogle Scholar
Schwarz, N., Strack, F., Muller, G., Chassein, B. (1988). The range of response alternatives may determine the meaning of the question: Further evidence on informative functions of response alternatives. Social Cognition, 6, 107117CrossRefGoogle Scholar
Slater, P. (1960). Inconsistencies in a schedule of paired comparisons. Biometrika, 48, 303312CrossRefGoogle Scholar
Sterngold, A., Warland, R.H., Herrmann, R. (1994). Do surveys overstate public concerns?. Public Opinion Quarterly, 58, 255263CrossRefGoogle Scholar
Sujan, M. (1985). Consumer knowledge: Effects on evaluation strategies mediating consumer judgments. Journal of Consumer Research, 12, 3146CrossRefGoogle Scholar
Takane, Y., Young, F.W., de Leeuw, J. (1977). Nonmetric individual differences multidimensional scaling: An alternating least-squares method with optimal scaling features. Psychometrika, 42(1), 767CrossRefGoogle Scholar
Tanner, M.A., Wong, W.H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association, 82, 528540CrossRefGoogle Scholar
Tucker, L.R. (1960). Intra-individual and inter-individual multidimensionality. In Gulliksen, H., Messick, S. Psychological scaling: Theory and applications, New York: Wiley 110123Google Scholar
Vincente, K.J., Wang, J.H. (1998). An ecological theory of expertise effects in memory recall. Psychological Review, 105, 3557Google Scholar
Wedel, M., DeSarbo, W.S. (1996). An exponential-family multidimensional scaling mixture methodology. Journal of Business and Economic Statistics, 14(4), 447459CrossRefGoogle Scholar
Wedel, M., Kamakura, W. (2000). Market segmentation: Conceptual and methodological foundations, Boston: Kluwer AcademicCrossRefGoogle Scholar
Wright, P., Weitz, B. (1977). Time horizon effects on product evaluation strategies. Journal of Marketing Research, 14, 429443CrossRefGoogle Scholar
Yang, S., Allenby, G., Fennell, G. (2002). Modeling variation in brand preference: The roles of objective environment and motivating conditions. Marketing Science, 21, 1431CrossRefGoogle Scholar
Young, F.W., Hamer, R.M. (1987). Multidimensional scaling: History, theory and applications, Hillsdale: Lawrence Erlbaum AssociatesGoogle Scholar
Young, F.W., Torgerson, W.S. (1967). TORSCA, a FORTRAN IV program for Shepard-Kruskal multidimensional scaling analysis. Behavioral Science, 12(6), 498Google Scholar