No CrossRef data available.
Published online by Cambridge University Press: 01 January 2025
When an arbitrary positive scalar matrix is added to a correlation matrix the latent roots of the sum are equal to the corresponding roots of the correlation matrix plus an amount equal to the scalar number of the scalar matrix. The latent vectors of the sum are identical with those of the correlation matrix. An approximation to these relationships is suggested for the case in which the sum is of a correlation matrix and of a positive semidefinite diagonal matrix. The approximation is used to allow the solution of a characteristic problem for a correlation matrix with unities in the main diagonal to provide a family of solutions for the same correlation matrix.
This research has been supported by a grant from the National Institute of Mental Health, MH 7864-01.