Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-06T03:05:00.767Z Has data issue: false hasContentIssue false

A Note on the Computation of the Second-Order Derivatives of the Elementary Symmetric Functions in the Rasch Model

Published online by Cambridge University Press:  01 January 2025

Anton K. Formann*
Affiliation:
University of Vienna
*
Requests for reprints should be sent to Anton K. Formann, Institut für Psychologie, Universität Wien, Liebiggasse 5, A-1010 Wien, AUSTRIA.

Abstract

Jansen (1984) gave explicit formulas for the computation of the second-order derivatives of the elementary symmetric functions. But they are only applicable to those pairs of items which have unequal parameters. It is shown here that for equal parameters similar explicit formulas do exist, too, facilitating the application of the Newton-Raphson procedure to estimate the parameters in the Rasch model and related models according to the conditional maximum likelihood principle.

Type
Notes and Comments
Copyright
Copyright © 1986 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author wishes to thank the reviewers for their helpful comments on an earlier draft of this paper.

References

Andersen, E. B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123140.CrossRefGoogle Scholar
Fischer, G. H. (1981). On the existence and uniqueness of maximum likelihood estimates in the Rasch model. Psychometrika, 46, 5977.CrossRefGoogle Scholar
Fischer, G. H. (1983). Logistic latent trait models with linear constraints. Psychometrika, 48, 326.CrossRefGoogle Scholar
Fischer, G. H., Allerup, P. (1968). Rechentechnische Fragen zu Raschs eindimensionalem Modell [Numerical problems in the unidimensional Rasch model]. In Fischer, G. H. (Eds.), Psychologische Testtheorie (pp. 269280). Bern: Huber.Google Scholar
Gustafsson, J.-E. (1980). A solution of the conditional estimation problem for long tests in the Rasch model for dichotomous items. Educational and Psychological Measurement, 40, 377385.CrossRefGoogle Scholar
Jansen, P. G. W. (1984). Computing the second-order derivatives of the symmetric functions in the Rasch model. Kwantitatieve Methoden, 5, 131147.Google Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests, Copenhagen: Paedagogiske Institut.Google Scholar
van den Wollenberg, A. L. (1982). Two new test statistics for the Rasch model. Psychometrika, 47, 123140.CrossRefGoogle Scholar
Verhelst, N. D., Glas, C. A. W., van der. Sluis, A. (1984). Estimation problems in Rasch model: The basic symmetric functions. Computational Statistics Quarterly, 1, 245262.Google Scholar