Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-06T03:46:48.947Z Has data issue: false hasContentIssue false

Oblique Factors and Components with Independent Clusters

Published online by Cambridge University Press:  01 January 2025

Haruhiko Ogasawara*
Affiliation:
Otaru University of Commerce
*
Request for reprints should be sent to Haruhiko Ogasawara, Department of Information and Management Science, Otaru University of Commerce, 3-5-21, Midori, Otaru 047-8501 Japan. E-Mail: hogasa@res.otaru-uc.ac.jp

Abstract

Relationships between the results of factor analysis and component analysis are derived when oblique factors have independent clusters with equal variances of unique factors. The factor loadings are analytically shown to be smaller than the corresponding component loadings while the factor correlations are shown to be greater than the corresponding component correlations. The condition for the inequality of the factor/component contributions is derived in the case with different variances for unique factors. Further, the asymptotic standard errors of parameter estimates are obtained for a simplified model with the assumption of multivariate normality, which shows that the component loading estimate is more stable than the corresponding factor loading estimate.

Type
Articles
Copyright
Copyright © 2003 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archer, C.O., Jennrich, R.I. (1973). Standard errors for rotated factor loadings. Psychometrika, 38, 581592.CrossRefGoogle Scholar
Bentler, P.M. (1989). EQS: A structural equations program. Los Angeles, CA: BMDP Statistical Software.Google Scholar
Bentler, P.M., Kano, Y. (1990). On the equivalence of factors and components. Multivariate Behavioral Research, 25, 6774.CrossRefGoogle ScholarPubMed
Borgatta, E.F. (1989). A note on using factor analysis and other procedures in research: A reply to Wilkinson. Sociological Methods and Research, 17, 460464.CrossRefGoogle Scholar
Borgatta, E.F., Kercher, K., Stull, D.E. (1986). A cautionary note on the use of principal components analysis. Sociological Methods and Research, 15, 160168.CrossRefGoogle Scholar
Browne, M.W. (1982). Covariance structures. In Hawkins, D.M. (Eds.), Topics in applied multivariate analysis (pp. 72141). Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
Browne, M.W. (1984). The decomposition of multitrait-multimethod matrices. British Journal of Mathematical and Statistical Psychology, 37, 124.CrossRefGoogle ScholarPubMed
Browne, M.W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 6283.CrossRefGoogle ScholarPubMed
Browne, M.W., Cudeck, R., Tateneni, K., & Mels, G. (1999). CEFA: Comprehensive exploratory factor analysis (Version 1.03). URL: http://quantrm2.psy.ohio-state.edu/browne/Google Scholar
Campbell, D.T., Fiske, D.W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56, 81105.CrossRefGoogle ScholarPubMed
Campbell, D.T., O'Connell, E.J. (1967). Method factors in multitrait-multimethod matrices: Multiplicative rather than additive?. Multivariate Behavioral Research, 2, 409426.CrossRefGoogle ScholarPubMed
Cudeck, R. (1988). Multiplicative models and MTMM matrices. Journal of Educational Statistics, 13, 131147.Google Scholar
Cudeck, R., O'Dell, L.L. (1994). Applications of standard error estimates in unrestricted factor analysis: Significance tests for factor loadings and correlations. Psychological Bulletin, 115, 475487.CrossRefGoogle ScholarPubMed
Dolan, C. (1996). Principal component analysis using LISREL 8. Structural Equation Modeling, 3, 307322.CrossRefGoogle Scholar
Fava, J.L., Velicer, W.F. (1992). An empirical comparison of factor, image, component, and scale scores. Multivariate Behavioral Research, 27, 301322.CrossRefGoogle ScholarPubMed
Girshick, M.A. (1939). On the sampling theory of roots of determinantal equations. Annals of Mathematical Statistics, 10, 203224.CrossRefGoogle Scholar
Harman, H.H. (1976). Modern factor analysis 3rd ed., Chicago, IL: University of Chicago Press.Google Scholar
Harris, C.W., Kaiser, H.F. (1964). Oblique factor analystic solutions by orthogonal transformations. Psychometrika, 29, 347362.CrossRefGoogle Scholar
Harville, D.A. (1997). Matrix algebra from a statistician's perspective. New York, NY: Springer.CrossRefGoogle Scholar
Hayashi, K., Bentler, P.M. (2000). On the relations among regular, equal unique variances, and image factor analysis models. Psychometrika, 65, 5972.CrossRefGoogle Scholar
Hayashi, K., Yung, Y.F. (1999). Standard errors for the class of orthomax-rotated factor loadings: Some matrix results. Psychometrika, 64, 451460.CrossRefGoogle Scholar
Hubbard, R., Allen, S.J. (1987). A cautionary note on the use of principal components analysis: Supportive empirical evidence. Sociological Methods and Research, 16, 301308.CrossRefGoogle Scholar
Hubbard, R., Allen, S.J. (1989). Differences in empirical results using principal components and factor analysis: A reply to Wilkinson. Sociological Methods and Research, 17, 465466.CrossRefGoogle Scholar
Jennrich, R.I. (1973). Standard errors for obliquely rotated factor loadings. Psychometrika, 38, 593604.CrossRefGoogle Scholar
Jennrich, R.I. (1974). Simplified formulae for standard errors in maximum likelihood factor analysis. British Journal of Mathematical and Statistical Psychology, 27, 122131.CrossRefGoogle Scholar
Jennrich, R.I., Thayer, D.T. (1973). A note on Lawley's formulas for standard errors in maximum likelihood factor analysis. Psychometrika, 38, 571579.CrossRefGoogle Scholar
Jöreskog, K.G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183202.CrossRefGoogle Scholar
Jöreskog, K.G. (1978). Structural analysis of covariance and correlation matrices. Psychometrika, 43, 443477.CrossRefGoogle Scholar
Jöreskog, K.G., Sörbom, D. (1996). LISREL8: User's reference guide 2nd ed., Chicago, IL: Scientific Software International.Google Scholar
Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200.CrossRefGoogle Scholar
Kiers, H.A.L. (1997). Three-mode orthomax rotation. Psychometrika, 62, 579598.CrossRefGoogle Scholar
Kiers, H.A.L., ten Berge, J.M.F. (1994). The Harris-Kaiser independent cluster rotation as a method for rotation to simple component weights. Psychometrika, 59, 8190.CrossRefGoogle Scholar
Kollo, T., Neudecker, H. (1993). Asymptotics of eigenvalues and unit-length eigenvectors of sample variance and correlation matrices. Journal of Multivariate Analysis, 47, 283300.CrossRefGoogle Scholar
Kollo, T., Neudecker, H. (1994). Corrigendum for “Asymptotics of eigenvalues and unit-length eigenvectors of sample variance and correlation matrices”. Journal of Multivariate Analysis, 51, 210210.Google Scholar
Kollo, T., Neudecker, H. (1997). Asymptotics of Pearson-Hotelling principal component vectors of sample variance and correlation matrices. Behaviormetrika, 24, 5169.CrossRefGoogle Scholar
Lawley, D.N. (1967). Some new results in maximum likelihood factor analysis. Proceedings of the Royal Society of Edinburgh, 67, 256264.Google Scholar
Lawley, D.N., Maxwell, A.E. (1971). Factor analysis as a statistical method 2nd ed., London: Butterworths.Google Scholar
Magnus, J.R., Neudecker, H. (1988). Matrix differential calculus with applications in statistics and econometrics. New York, NY: John Wiley & Sons.Google Scholar
Ogasawara, H. (1998). Standard errors for rotation matrices with an application to the promax solution. British Journal of Mathematical and Statistical Psychology, 51, 163178.CrossRefGoogle Scholar
Ogasawara, H. (1998). Standard errors of several indices for unrotated and rotated factors. Economic Review, 49(1), 2169.Google Scholar
Ogasawara, H. (1999). Standard errors for procrustes solutions. Japanese Psychological Research, 41, 121130.CrossRefGoogle Scholar
Ogasawara, H. (2000). Some relationships between factors and components. Psychometrika, 65, 167185.CrossRefGoogle Scholar
Ogasawara, H. (2000). Errata for “Some relationships between factors and components”. Psychometrika, 65, 551551.CrossRefGoogle Scholar
Ogasawara, H. (2000). Standard errors for the Harris-Kaiser Case II orthoblique solution. Behaviometrika, 27, 89103.CrossRefGoogle Scholar
Ogasawara, H. (2000d). ROSEF Version 1.0 user's guide: A subroutine library for the rotated solutions with their asymptotic standard errors in factor analysis. URL: http://www.res.otaru-uc.ac.jp/∼hogasa/Google Scholar
Ogasawara, H. (2000). Standard errors of the principal component loadings for unstandardized and standardized variables. British Journal of Mathematical and Statistical Psychology, 53, 155174.CrossRefGoogle ScholarPubMed
Ogasawara, H. (2002). Concise formulas for the standard errors of component loading estimates. Psychometrika, 67, 289297.CrossRefGoogle Scholar
Ogasawara, H. (2003). A supplementary note on the paper “Oblique factors and components with independent clusters”. Economic Review, 53(4), 5566.Google Scholar
Rozeboom, W.M. (1990). What happened to broad perspective?. Multivariate Behavioral Research, 25, 6165.CrossRefGoogle ScholarPubMed
SAS Institute (2000). SAS/STAT software: Changes and enhancements (Release 8.1). Cary, NC: Author.Google Scholar
Sato, M. (1990). Some remarks on principal component analysis as a substitute for factor analysis in monofactor cases. Journal of Japan Statistical Society, 20, 2331.Google Scholar
Sato, M. (1992). A study of an identification problem and substitute use of principal component analysis in factor analysis. Hiroshima Mathematical Journal, 22, 479524.CrossRefGoogle Scholar
Schneeweiss, H. (1997). Factors and principal components in the near spherical case. Multivariate Behavioral Research, 32, 375401.CrossRefGoogle ScholarPubMed
Schneeweiss, H., Mathes, H. (1995). Factor analysis and principal components. Journal of Multivariate Analysis, 55, 105124.CrossRefGoogle Scholar
Snook, S.C., Gorsuch, R.L. (1989). Component analysis versus common factor analysis: A Monte Carlo study. Psychological Bulletin, 106, 148154.CrossRefGoogle Scholar
Steiger, J.H., Hakstian, A.R. (1982). The asymptotic distribution of elements of a correlation matrix: Theory and application. British Journal of Mathematical and Statistical Psychology, 35, 208215.CrossRefGoogle Scholar
Velicer, W.F. (1977). An empirical comparison of the similarity of principal component, image, and factor patters. Multivariate Behavioral Research, 12, 322.CrossRefGoogle Scholar
Velicer, W.F., Fava, J.L. (1987). An evaluation of the effects of variable sampling on component, image, and factor analysis. Multivariate Behavioral Research, 22, 193209.CrossRefGoogle ScholarPubMed
Velicer, W.F., Fava, J.L. (1998). Effects of variable and subject sampling on factor pattern recovery. Psychological Methods, 3, 231251.CrossRefGoogle Scholar
Velicer, W.F., Jackson, D.N. (1990). Component analysis versus common factor analysis: Some issues in selecting an appropriate procedure (with comments and reply). Multivariate Behavioral Research, 25, 1114.CrossRefGoogle Scholar
Velicer, W.F., Peacock, A.C., Jackson, D.N. (1982). A comparison of component and factor patterns: A Monte Carlo approach. Multivariate Behavioral Research, 17, 371388.CrossRefGoogle ScholarPubMed
Widaman, K.F. (1993). Common factor analysis versus principal component analysis: Differential bias in representing model parameters?. Multivariate Behavioral Research, 28, 263311.CrossRefGoogle ScholarPubMed
Wilkinson, L. (1989). A cautionary note on the use of factor analysis.; A response to Borgatta, Kercher, and Stull, and Hubbard and Allen. Sociological Methods and Research, 17, 449459.CrossRefGoogle Scholar
Wilkinson, L. (1989). A final note on Borgatta, Kercher, and Stull, and Hubbard and Allen. Sociological Methods and Research, 17, 467467.CrossRefGoogle Scholar
Wothke, W. (1996). Models for multitrait-multimethod matrix analysis. In Marcoulides, G.A., Schumacker, R.E. (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 756). Mahwah, NJ: Lawrence Earlbaum & Associates.Google Scholar